C 程序主要包括以下部分:
一段简单的代码,可以输出单词 "Hello World":
#include
int main()
{
/* 我的第一个 C 程序 */
printf("Hello, World! \n");
return 0;
}
接下来我们讲解一下上面这段程序:
接下来让我们看看如何把源代码保存在一个文件中,以及如何编译并运行它。下面是简单的步骤:
$ gcc hello.c
$ ./a.out
Hello, World!
请确保您的路径中已包含 gcc 编译器,并确保在包含源文件 hello.c 的目录中运行它。
如果是多个 c 代码的源码文件,编译方法如下:
$ gcc test1.c test2.c -o main.out
$ ./main.out
C 程序由各种令牌组成,令牌可以是关键字、标识符、常量、字符串值,或者是一个符号。例如,下面的 C 语句包括五个令牌:
printf("Hello, World! \n");这五个令牌分别是:
printf ( "Hello, World! \n" ) ;
在 C 程序中,分号是语句结束符。也就是说,每个语句必须以分号结束。它表明一个逻辑实体的结束。
例如,下面是两个不同的语句:
printf("Hello, World! \n"); return 0;
C 语言有两种注释方式:
单行注释:
// 单行注释
以 // 开始的单行注释,这种注释可以单独占一行。
多行注释:
/* 单行注释 */
/*
多行注释
多行注释
多行注释
*//* */ 这种格式的注释可以单行或多行。
您不能在注释内嵌套注释,注释也不能出现在字符串或字符值中。
C 标识符是用来标识变量、函数,或任何其他用户自定义项目的名称。一个标识符以字母 A-Z 或 a-z 或下划线 _ 开始,后跟零个或多个字母、下划线和数字(0-9)。
C 标识符内不允许出现标点字符,比如 @、$ 和 %。C 是区分大小写的编程语言。因此,在 C 中,Manpower 和 manpower 是两个不同的标识符。下面列出几个有效的标识符:
mohd zara abc move_name a_123
myname50 _temp j a23b9 retVal
下表列出了 C 中的保留字。这些保留字不能作为常量名、变量名或其他标识符名称。
关键字 | 说明 |
---|---|
auto | 声明自动变量 |
break | 跳出当前循环 |
case | 开关语句分支 |
char | 声明字符型变量或函数返回值类型 |
const | 定义常量,如果一个变量被 const 修饰,那么它的值就不能再被改变 |
continue | 结束当前循环,开始下一轮循环 |
default | 开关语句中的"其它"分支 |
do | 循环语句的循环体 |
double | 声明双精度浮点型变量或函数返回值类型 |
else | 条件语句否定分支(与 if 连用) |
enum | 声明枚举类型 |
extern | 声明变量或函数是在其它文件或本文件的其他位置定义 |
float | 声明浮点型变量或函数返回值类型 |
for | 一种循环语句 |
goto | 无条件跳转语句 |
if | 条件语句 |
int | 声明整型变量或函数 |
long | 声明长整型变量或函数返回值类型 |
register | 声明寄存器变量 |
return | 子程序返回语句(可以带参数,也可不带参数) |
short | 声明短整型变量或函数 |
signed | 声明有符号类型变量或函数 |
sizeof | 计算数据类型或变量长度(即所占字节数) |
static | 声明静态变量 |
struct | 声明结构体类型 |
switch | 用于开关语句 |
typedef | 用以给数据类型取别名 |
unsigned | 声明无符号类型变量或函数 |
union | 声明共用体类型 |
void | 声明函数无返回值或无参数,声明无类型指针 |
volatile | 说明变量在程序执行中可被隐含地改变 |
while | 循环语句的循环条件 |
_Bool | _Complex | _Imaginary | inline | restrict |
_Alignas | _Alignof | _Atomic | _Generic | _Noreturn |
_Static_assert | _Thread_local |
只包含空格的行,被称为空白行,可能带有注释,C 编译器会完全忽略它。
在 C 中,空格用于描述空白符、制表符、换行符和注释。空格分隔语句的各个部分,让编译器能识别语句中的某个元素(比如 int)在哪里结束,下一个元素在哪里开始。因此,在下面的语句中:
int age;
在这里,int 和 age 之间必须至少有一个空格字符(通常是一个空白符),这样编译器才能够区分它们。另一方面,在下面的语句中:
fruit = apples + oranges; // 获取水果的总数
fruit 和 =,或者 = 和 apples 之间的空格字符不是必需的,但是为了增强可读性,您可以根据需要适当增加一些空格。
在 C 语言中,数据类型指的是用于声明不同类型的变量或函数的一个广泛的系统。变量的类型决定了变量存储占用的空间,以及如何解释存储的位模式。
C 中的类型可分为以下几种:
序号 | 类型与描述 |
---|---|
1 | 基本数据类型 它们是算术类型,包括整型(int)、字符型(char)、浮点型(float)和双精度浮点型(double)。 |
2 | 枚举类型: 它们也是算术类型,被用来定义在程序中只能赋予其一定的离散整数值的变量。 |
3 | void 类型: 类型说明符 void 表示没有值的数据类型,通常用于函数返回值。 |
4 | 派生类型: :包括数组类型、指针类型和结构体类型。 |
数组类型和结构类型统称为聚合类型。函数的类型指的是函数返回值的类型。在本章节接下来的部分我们将介绍基本类型,其他几种类型会在后边几个章节中进行讲解。
下表列出了关于标准整数类型的存储大小和值范围的细节:
类型 | 存储大小 | 值范围 |
---|---|---|
char | 1 字节 | -128 到 127 或 0 到 255 |
unsigned char | 1 字节 | 0 到 255 |
signed char | 1 字节 | -128 到 127 |
int | 2 或 4 字节 | -32,768 到 32,767 或 -2,147,483,648 到 2,147,483,647 |
unsigned int | 2 或 4 字节 | 0 到 65,535 或 0 到 4,294,967,295 |
short | 2 字节 | -32,768 到 32,767 |
unsigned short | 2 字节 | 0 到 65,535 |
long | 4 字节 | -2,147,483,648 到 2,147,483,647 |
unsigned long | 4 字节 | 0 到 4,294,967,295 |
注意,各种类型的存储大小与系统位数有关,但目前通用的以64位系统为主。
以下列出了32位系统与64位系统的存储大小的差别(windows 相同):
为了得到某个类型或某个变量在特定平台上的准确大小,您可以使用 sizeof 运算符。表达式 sizeof(type) 得到对象或类型的存储字节大小。下面的实例演示了获取 int 类型的大小:
#include
#include
int main()
{
printf("int 存储大小 : %lu \n", sizeof(int));
return 0;
}
%lu 为 32 位无符号整数,详细说明查看 C 库函数 - printf()。
当您在 Linux 上编译并执行上面的程序时,它会产生下列结果:
int 存储大小 : 4
下表列出了关于标准浮点类型的存储大小、值范围和精度的细节:
类型 | 存储大小 | 值范围 | 精度 |
---|---|---|---|
float | 4 字节 | 1.2E-38 到 3.4E+38 | 6 位有效位 |
double | 8 字节 | 2.3E-308 到 1.7E+308 | 15 位有效位 |
long double | 16 字节 | 3.4E-4932 到 1.1E+4932 | 19 位有效位 |
头文件 float.h 定义了宏,在程序中可以使用这些值和其他有关实数二进制表示的细节。下面的实例将输出浮点类型占用的存储空间以及它的范围值:
实例
#include
#include
int main()
{
printf("float 存储最大字节数 : %lu \n", sizeof(float));
printf("float 最小值: %E\n", FLT_MIN );
printf("float 最大值: %E\n", FLT_MAX );
printf("精度值: %d\n", FLT_DIG );
return 0;
}
%E 为以指数形式输出单、双精度实数,详细说明查看 C 库函数 - printf()。
当您在 Linux 上编译并执行上面的程序时,它会产生下列结果:
float 存储最大字节数 : 4 float 最小值: 1.175494E-38 float 最大值: 3.402823E+38 精度值: 6
void 类型指定没有可用的值。它通常用于以下三种情况下:
序号 | 类型与描述 |
---|---|
1 | 函数返回为空 C 中有各种函数都不返回值,或者您可以说它们返回空。不返回值的函数的返回类型为空。例如 void exit (int status); |
2 | 函数参数为空 C 中有各种函数不接受任何参数。不带参数的函数可以接受一个 void。例如 int rand(void); |
3 | 指针指向 void 类型为 void * 的指针代表对象的地址,而不是类型。例如,内存分配函数 void *malloc( size_t size ); 返回指向 void 的指针,可以转换为任何数据类型。 |
如果现在您还是无法完全理解 void 类型,不用太担心,在后续的章节中我们将会详细讲解这些概念。
类型转换是将一个数据类型的值转换为另一种数据类型的值。
C 语言中有两种类型转换:
隐式类型转换:隐式类型转换是在表达式中自动发生的,无需进行任何明确的指令或函数调用。它通常是将一种较小的类型自动转换为较大的类型,例如,将int类型转换为long类型或float类型转换为double类型。隐式类型转换也可能会导致数据精度丢失或数据截断。
显式类型转换:显式类型转换需要使用强制类型转换运算符(type casting operator),它可以将一个数据类型的值强制转换为另一种数据类型的值。强制类型转换可以使程序员在必要时对数据类型进行更精确的控制,但也可能会导致数据丢失或截断。
隐式类型转换实例:
实例
int i = 10;
float f = 3.14;
double d = i + f; // 隐式将int类型转换为double类型
显式类型转换实例:
实例
double d = 3.14159;
int i = (int)d; // 显式将double类型转换为int类型
变量其实只不过是程序可操作的存储区的名称。C 中每个变量都有特定的类型,类型决定了变量存储的大小和布局,该范围内的值都可以存储在内存中,运算符可应用于变量上。
变量的名称可以由字母、数字和下划线字符组成。它必须以字母或下划线开头。大写字母和小写字母是不同的,因为 C 是大小写敏感的。基于前一章讲解的基本类型,有以下几种基本的变量类型:
类型 | 描述 |
---|---|
char | 通常是一个字节(八位), 这是一个整数类型。 |
int | 整型,4 个字节,取值范围 -2147483648 到 2147483647。 |
float | 单精度浮点值。单精度是这样的格式,1位符号,8位指数,23位小数。 |
double | 双精度浮点值。双精度是1位符号,11位指数,52位小数。 |
void | 表示类型的缺失。 |
C 语言也允许定义各种其他类型的变量,比如枚举、指针、数组、结构、共用体等等,这将会在后续的章节中进行讲解,本章节我们先讲解基本变量类型。
变量定义就是告诉编译器在何处创建变量的存储,以及如何创建变量的存储。变量定义指定一个数据类型,并包含了该类型的一个或多个变量的列表,如下所示:
type variable_list;
type 表示变量的数据类型,可以是整型、浮点型、字符型、指针等,也可以是用户自定义的对象。
variable_list 可以由一个或多个变量的名称组成,多个变量之间用逗号,分隔,变量由字母、数字和下划线组成,且以字母或下划线开头。
下面列出几个有效的声明:
定义整型变量:
int age;
以上代码中,age 被定义为一个整型变量。
定义浮点型变量:
float salary;
以上代码中,salary 被定义为一个浮点型变量。
定义字符型变量:
char grade;
以上代码中,grade 被定义为一个字符型变量。
定义指针变量:
int *ptr;
以上代码中,ptr 被定义为一个整型指针变量。
定义多个变量:
int i, j, k;
int i, j, k; 声明并定义了变量 i、j 和 k,这指示编译器创建类型为 int 的名为 i、j、k 的变量。
在 C 语言中,变量的初始化是在定义变量的同时为其赋予一个初始值。变量的初始化可以在定义时进行,也可以在后续的代码中进行。
初始化器由一个等号,后跟一个常量表达式组成,如下所示:
type variable_name = value;
其中,type 表示变量的数据类型,variable_name 是变量的名称,value 是变量的初始值。
下面列举几个实例:
int x = 10; // 整型变量 x 初始化为 10 float pi = 3.14; // 浮点型变量 pi 初始化为 3.14 char ch = 'A'; // 字符型变量 ch 初始化为字符 'A' extern int d = 3, f = 5; // d 和 f 的声明与初始化 int d = 3, f = 5; // 定义并初始化 d 和 f byte z = 22; // 定义并初始化 z
后续初始化变量:
在变量定义后的代码中,可以使用赋值运算符 = 为变量赋予一个新的值。
type variable_name; // 变量定义 variable_name = new_value; // 变量初始化
实例如下:
int x; // 整型变量x定义 x = 20; // 变量x初始化为20 float pi; // 浮点型变量pi定义 pi = 3.14159; // 变量pi初始化为3.14159 char ch; // 字符型变量ch定义 ch = 'B'; // 变量ch初始化为字符'B'
需要注意的是,变量在使用之前应该被初始化。未初始化的变量的值是未定义的,可能包含任意的垃圾值。因此,为了避免不确定的行为和错误,建议在使用变量之前进行初始化。
在 C 语言中,如果变量没有显式初始化,那么它的默认值将取决于该变量的类型和其所在的作用域。
对于全局变量和静态变量(在函数内部定义的静态变量和在函数外部定义的全局变量),它们的默认初始值为零。
以下是不同类型的变量在没有显式初始化时的默认值:
需要注意的是,局部变量(在函数内部定义的非静态变量)不会自动初始化为默认值,它们的初始值是未定义的(包含垃圾值)。因此,在使用局部变量之前,应该显式地为其赋予一个初始值。
总结起来,C 语言中变量的默认值取决于其类型和作用域。全局变量和静态变量的默认值为 0,字符型变量的默认值为 \0,指针变量的默认值为 NULL,而局部变量没有默认值,其初始值是未定义的。
变量声明向编译器保证变量以指定的类型和名称存在,这样编译器在不需要知道变量完整细节的情况下也能继续进一步的编译。变量声明只在编译时有它的意义,在程序连接时编译器需要实际的变量声明。
变量的声明有两种情况:
extern int i; //声明,不是定义 int i; //声明,也是定义
常量是固定值,在程序执行期间不会改变。这些固定的值,又叫做字面量。
常量可以是任何的基本数据类型,比如整数常量、浮点常量、字符常量,或字符串字面值,也有枚举常量。
常量就像是常规的变量,只不过常量的值在定义后不能进行修改。
常量可以直接在代码中使用,也可以通过定义常量来使用。
整数常量可以是十进制、八进制或十六进制的常量。前缀指定基数:0x 或 0X 表示十六进制,0 表示八进制,不带前缀则默认表示十进制。
整数常量也可以带一个后缀,后缀是 U 和 L 的组合,U 表示无符号整数(unsigned),L 表示长整数(long)。后缀可以是大写,也可以是小写,U 和 L 的顺序任意。
下面列举几个整数常量的实例:
212 /* 合法的 */ 215u /* 合法的 */ 0xFeeL /* 合法的 */ 078 /* 非法的:8 不是八进制的数字 */ 032UU /* 非法的:不能重复后缀 */
以下是各种类型的整数常量的实例:
85 /* 十进制 */ 0213 /* 八进制 */ 0x4b /* 十六进制 */ 30 /* 整数 */ 30u /* 无符号整数 */ 30l /* 长整数 */ 30ul /* 无符号长整数 */
整数常量可以带有一个后缀表示数据类型,例如:
实例
int myInt = 10;
long myLong = 100000L;
unsigned int myUnsignedInt = 10U;
浮点常量由整数部分、小数点、小数部分和指数部分组成。您可以使用小数形式或者指数形式来表示浮点常量。
当使用小数形式表示时,必须包含整数部分、小数部分,或同时包含两者。当使用指数形式表示时, 必须包含小数点、指数,或同时包含两者。带符号的指数是用 e 或 E 引入的。
下面列举几个浮点常量的实例:
3.14159 /* 合法的 */ 314159E-5L /* 合法的 */ 510E /* 非法的:不完整的指数 */ 210f /* 非法的:没有小数或指数 */ .e55 /* 非法的:缺少整数或分数 */
浮点数常量可以带有一个后缀表示数据类型,例如:
实例
float myFloat = 3.14f;
double myDouble = 3.14159;
字符常量是括在单引号中,例如,'x' 可以存储在 char 类型的简单变量中。
字符常量可以是一个普通的字符(例如 'x')、一个转义序列(例如 '\t'),或一个通用的字符(例如 '\u02C0')。
在 C 中,有一些特定的字符,当它们前面有反斜杠时,它们就具有特殊的含义,被用来表示如换行符(\n)或制表符(\t)等。下表列出了一些这样的转义序列码:
转义序列 | 含义 |
---|---|
\\ | \ 字符 |
\' | ' 字符 |
\" | " 字符 |
\? | ? 字符 |
\a | 警报铃声 |
\b | 退格键 |
\f | 换页符 |
\n | 换行符 |
\r | 回车 |
\t | 水平制表符 |
\v | 垂直制表符 |
\ooo | 一到三位的八进制数 |
\xhh . . . | 一个或多个数字的十六进制数 |
下面的实例显示了一些转义序列字符:
实例
#include
int main()
{
printf("Hello\tWorld\n\n");
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Hello World
字符常量的 ASCII 值可以通过强制类型转换转换为整数值。
实例
char myChar = 'a';
int myAsciiValue = (int) myChar; // 将 myChar 转换为 ASCII 值 97
字符串字面值或常量是括在双引号 " " 中的。一个字符串包含类似于字符常量的字符:普通的字符、转义序列和通用的字符。
您可以使用空格做分隔符,把一个很长的字符串常量进行分行。
下面的实例显示了一些字符串常量。下面这三种形式所显示的字符串是相同的。
"hello, dear" "hello, \ dear" "hello, " "d" "ear"
字符串常量在内存中以 null 终止符 \0 结尾。例如:
char myString[] = "Hello, world!"; //系统对字符串常量自动加一个 '\0'
在 C 中,有两种简单的定义常量的方式:
下面是使用 #define 预处理器定义常量的形式:
#define 常量名 常量值
下面的代码定义了一个名为 PI 的常量:
#define PI 3.14159
在程序中使用该常量时,编译器会将所有的 PI 替换为 3.14159。
具体请看下面的实例:
实例
#include
#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'
int main()
{
int area;
area = LENGTH * WIDTH;
printf("value of area : %d", area);
printf("%c", NEWLINE);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
value of area : 50
您可以使用 const 前缀声明指定类型的常量,如下所示:
const 数据类型 常量名 = 常量值;
下面的代码定义了一个名为MAX_VALUE的常量:
const int MAX_VALUE = 100;
在程序中使用该常量时,其值将始终为100,并且不能被修改。
const 声明常量要在一个语句内完成:
具体请看下面的实例:
实例
#include
int main()
{
const int LENGTH = 10;
const int WIDTH = 5;
const char NEWLINE = '\n';
int area;
area = LENGTH * WIDTH;
printf("value of area : %d", area);
printf("%c", NEWLINE);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
value of area : 50
请注意,把常量定义为大写字母形式,是一个很好的编程习惯。
#define 与 const 这两种方式都可以用来定义常量,选择哪种方式取决于具体的需求和编程习惯。通常情况下,建议使用 const 关键字来定义常量,因为它具有类型检查和作用域的优势,而 #define 仅进行简单的文本替换,可能会导致一些意外的问题。
#define 预处理指令和 const 关键字在定义常量时有一些区别:
替换机制:#define
是进行简单的文本替换,而 const
是声明一个具有类型的常量。#define
定义的常量在编译时会被直接替换为其对应的值,而 const
定义的常量在程序运行时会分配内存,并且具有类型信息。
类型检查:#define
不进行类型检查,因为它只是进行简单的文本替换。而 const
定义的常量具有类型信息,编译器可以对其进行类型检查。这可以帮助捕获一些潜在的类型错误。
作用域:#define
定义的常量没有作用域限制,它在定义之后的整个代码中都有效。而 const
定义的常量具有块级作用域,只在其定义所在的作用域内有效。
调试和符号表:使用 #define
定义的常量在符号表中不会有相应的条目,因为它只是进行文本替换。而使用 const
定义的常量会在符号表中有相应的条目,有助于调试和可读性。
存储类定义 C 程序中变量/函数的存储位置、生命周期和作用域。
这些说明符放置在它们所修饰的类型之前。
下面列出 C 程序中可用的存储类:
auto 存储类是所有局部变量默认的存储类。
定义在函数中的变量默认为 auto 存储类,这意味着它们在函数开始时被创建,在函数结束时被销毁。
{ int mount; auto int month; }
上面的实例定义了两个带有相同存储类的变量,auto 只能用在函数内,即 auto 只能修饰局部变量。
register 存储类用于定义存储在寄存器中而不是 RAM 中的局部变量。这意味着变量的最大尺寸等于寄存器的大小(通常是一个字),且不能对它应用一元的 '&' 运算符(因为它没有内存位置)。
register 存储类定义存储在寄存器,所以变量的访问速度更快,但是它不能直接取地址,因为它不是存储在 RAM 中的。在需要频繁访问的变量上使用 register 存储类可以提高程序的运行速度。
{ register int miles; }
寄存器只用于需要快速访问的变量,比如计数器。还应注意的是,定义 'register' 并不意味着变量将被存储在寄存器中,它意味着变量可能存储在寄存器中,这取决于硬件和实现的限制。
static 存储类指示编译器在程序的生命周期内保持局部变量的存在,而不需要在每次它进入和离开作用域时进行创建和销毁。因此,使用 static 修饰局部变量可以在函数调用之间保持局部变量的值。
static 修饰符也可以应用于全局变量。当 static 修饰全局变量时,会使变量的作用域限制在声明它的文件内。
全局声明的一个 static 变量或方法可以被任何函数或方法调用,只要这些方法出现在跟 static 变量或方法同一个文件中。
静态变量在程序中只被初始化一次,即使函数被调用多次,该变量的值也不会重置。
以下实例演示了 static 修饰全局变量和局部变量的应用:
实例
#include
/* 函数声明 */
void func1(void);
static int count=10; /* 全局变量 - static 是默认的 */
int main()
{
while (count--) {
func1();
}
return 0;
}
void func1(void)
{
/* 'thingy' 是 'func1' 的局部变量 - 只初始化一次
* 每次调用函数 'func1' 'thingy' 值不会被重置。
*/
static int thingy=5;
thingy++;
printf(" thingy 为 %d , count 为 %d\n", thingy, count);
}
实例中 count 作为全局变量可以在函数内使用,thingy 使用 static 修饰后,不会在每次调用时重置。
可能您现在还无法理解这个实例,因为我已经使用了函数和全局变量,这两个概念目前为止还没进行讲解。即使您现在不能完全理解,也没有关系,后续的章节我们会详细讲解。当上面的代码被编译和执行时,它会产生下列结果:
thingy 为 6 , count 为 9 thingy 为 7 , count 为 8 thingy 为 8 , count 为 7 thingy 为 9 , count 为 6 thingy 为 10 , count 为 5 thingy 为 11 , count 为 4 thingy 为 12 , count 为 3 thingy 为 13 , count 为 2 thingy 为 14 , count 为 1 thingy 为 15 , count 为 0
extern 存储类用于定义在其他文件中声明的全局变量或函数。当使用 extern 关键字时,不会为变量分配任何存储空间,而只是指示编译器该变量在其他文件中定义。
extern 存储类用于提供一个全局变量的引用,全局变量对所有的程序文件都是可见的。当您使用 extern 时,对于无法初始化的变量,会把变量名指向一个之前定义过的存储位置。
当您有多个文件且定义了一个可以在其他文件中使用的全局变量或函数时,可以在其他文件中使用 extern 来得到已定义的变量或函数的引用。可以这么理解,extern 是用来在另一个文件中声明一个全局变量或函数。
extern 修饰符通常用于当有两个或多个文件共享相同的全局变量或函数的时候,如下所示:
第一个文件:main.c
实例
#include
int count ;
extern void write_extern();
int main()
{
count = 5;
write_extern();
}
第二个文件:support.c
实例
#include
extern int count;
void write_extern(void)
{
printf("count is %d\n", count);
}
在这里,第二个文件中的 extern 关键字用于声明已经在第一个文件 main.c 中定义的 count。现在 ,编译这两个文件,如下所示:
$ gcc main.c support.c
这会产生 a.out 可执行程序,当程序被执行时,它会产生下列结果:
count is 5
运算符是一种告诉编译器执行特定的数学或逻辑操作的符号。C 语言内置了丰富的运算符,并提供了以下类型的运算符:
本章将逐一介绍算术运算符、关系运算符、逻辑运算符、位运算符、赋值运算符和其他运算符。
下表显示了 C 语言支持的所有算术运算符。假设变量 A 的值为 10,变量 B 的值为 20,则:
运算符 | 描述 | 实例 |
---|---|---|
+ | 把两个操作数相加 | A + B 将得到 30 |
- | 从第一个操作数中减去第二个操作数 | A - B 将得到 -10 |
* | 把两个操作数相乘 | A * B 将得到 200 |
/ | 分子除以分母 | B / A 将得到 2 |
% | 取模运算符,整除后的余数 | B % A 将得到 0 |
++ | 自增运算符,整数值增加 1 | A++ 将得到 11 |
-- | 自减运算符,整数值减少 1 | A-- 将得到 9 |
实例
请看下面的实例,了解 C 语言中所有可用的算术运算符:
实例
#include
int main()
{
int a = 21;
int b = 10;
int c ;
c = a + b;
printf("Line 1 - c 的值是 %d\n", c );
c = a - b;
printf("Line 2 - c 的值是 %d\n", c );
c = a * b;
printf("Line 3 - c 的值是 %d\n", c );
c = a / b;
printf("Line 4 - c 的值是 %d\n", c );
c = a % b;
printf("Line 5 - c 的值是 %d\n", c );
c = a++; // 赋值后再加 1 ,c 为 21,a 为 22
printf("Line 6 - c 的值是 %d\n", c );
c = a--; // 赋值后再减 1 ,c 为 22 ,a 为 21
printf("Line 7 - c 的值是 %d\n", c );
}
当上面的代码被编译和执行时,它会产生下列结果:
Line 1 - c 的值是 31 Line 2 - c 的值是 11 Line 3 - c 的值是 210 Line 4 - c 的值是 2 Line 5 - c 的值是 1 Line 6 - c 的值是 21 Line 7 - c 的值是 22
以下实例演示了 a++ 与 ++a 的区别:
实例
#include
int main()
{
int c;
int a = 10;
c = a++;
printf("先赋值后运算:\n");
printf("Line 1 - c 的值是 %d\n", c );
printf("Line 2 - a 的值是 %d\n", a );
a = 10;
c = a--;
printf("Line 3 - c 的值是 %d\n", c );
printf("Line 4 - a 的值是 %d\n", a );
printf("先运算后赋值:\n");
a = 10;
c = ++a;
printf("Line 5 - c 的值是 %d\n", c );
printf("Line 6 - a 的值是 %d\n", a );
a = 10;
c = --a;
printf("Line 7 - c 的值是 %d\n", c );
printf("Line 8 - a 的值是 %d\n", a );
}
以上程序执行输出结果为:
先赋值后运算: Line 1 - c 的值是 10 Line 2 - a 的值是 11 Line 3 - c 的值是 10 Line 4 - a 的值是 9 先运算后赋值: Line 5 - c 的值是 11 Line 6 - a 的值是 11 Line 7 - c 的值是 9 Line 8 - a 的值是 9
下表显示了 C 语言支持的所有关系运算符。假设变量 A 的值为 10,变量 B 的值为 20,则:
运算符 | 描述 | 实例 |
---|---|---|
== | 检查两个操作数的值是否相等,如果相等则条件为真。 | (A == B) 为假。 |
!= | 检查两个操作数的值是否相等,如果不相等则条件为真。 | (A != B) 为真。 |
> | 检查左操作数的值是否大于右操作数的值,如果是则条件为真。 | (A > B) 为假。 |
< | 检查左操作数的值是否小于右操作数的值,如果是则条件为真。 | (A < B) 为真。 |
>= | 检查左操作数的值是否大于或等于右操作数的值,如果是则条件为真。 | (A >= B) 为假。 |
<= | 检查左操作数的值是否小于或等于右操作数的值,如果是则条件为真。 | (A <= B) 为真。 |
实例
请看下面的实例,了解 C 语言中所有可用的关系运算符:
实例
#include
int main()
{
int a = 21;
int b = 10;
int c ;
if( a == b )
{
printf("Line 1 - a 等于 b\n" );
}
else
{
printf("Line 1 - a 不等于 b\n" );
}
if ( a < b )
{
printf("Line 2 - a 小于 b\n" );
}
else
{
printf("Line 2 - a 不小于 b\n" );
}
if ( a > b )
{
printf("Line 3 - a 大于 b\n" );
}
else
{
printf("Line 3 - a 不大于 b\n" );
}
/* 改变 a 和 b 的值 */
a = 5;
b = 20;
if ( a <= b )
{
printf("Line 4 - a 小于或等于 b\n" );
}
if ( b >= a )
{
printf("Line 5 - b 大于或等于 a\n" );
}
}
当上面的代码被编译和执行时,它会产生下列结果:
Line 1 - a 不等于 b Line 2 - a 不小于 b Line 3 - a 大于 b Line 4 - a 小于或等于 b Line 5 - b 大于或等于 a
下表显示了 C 语言支持的所有关系逻辑运算符。假设变量 A 的值为 1,变量 B 的值为 0,则:
运算符 | 描述 | 实例 |
---|---|---|
&& | 称为逻辑与运算符。如果两个操作数都非零,则条件为真。 | (A && B) 为假。 |
|| | 称为逻辑或运算符。如果两个操作数中有任意一个非零,则条件为真。 | (A || B) 为真。 |
! | 称为逻辑非运算符。用来逆转操作数的逻辑状态。如果条件为真则逻辑非运算符将使其为假。 | !(A && B) 为真。 |
实例
请看下面的实例,了解 C 语言中所有可用的逻辑运算符:
实例
#include
int main()
{
int a = 5;
int b = 20;
int c ;
if ( a && b )
{
printf("Line 1 - 条件为真\n" );
}
if ( a || b )
{
printf("Line 2 - 条件为真\n" );
}
/* 改变 a 和 b 的值 */
a = 0;
b = 10;
if ( a && b )
{
printf("Line 3 - 条件为真\n" );
}
else
{
printf("Line 3 - 条件为假\n" );
}
if ( !(a && b) )
{
printf("Line 4 - 条件为真\n" );
}
}
当上面的代码被编译和执行时,它会产生下列结果:
Line 1 - 条件为真 Line 2 - 条件为真 Line 3 - 条件为假 Line 4 - 条件为真
位运算符作用于位,并逐位执行操作。&、 | 和 ^ 的真值表如下所示:
p | q | p & q | p | q | p ^ q |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 1 |
假设如果 A = 60,且 B = 13,现在以二进制格式表示,它们如下所示:
A = 0011 1100
B = 0000 1101
-----------------
A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011
下表显示了 C 语言支持的位运算符。假设变量 A 的值为 60,变量 B 的值为 13,则:
运算符 | 描述 | 实例 |
---|---|---|
& | 对两个操作数的每一位执行逻辑与操作,如果两个相应的位都为 1,则结果为 1,否则为 0。 按位与操作,按二进制位进行"与"运算。运算规则: 0&0=0; 0&1=0; 1&0=0; 1&1=1; |
(A & B) 将得到 12,即为 0000 1100 |
| | 对两个操作数的每一位执行逻辑或操作,如果两个相应的位都为 0,则结果为 0,否则为 1。 按位或运算符,按二进制位进行"或"运算。运算规则: 0|0=0; 0|1=1; 1|0=1; 1|1=1; |
(A | B) 将得到 61,即为 0011 1101 |
^ | 对两个操作数的每一位执行逻辑异或操作,如果两个相应的位值相同,则结果为 0,否则为 1。 异或运算符,按二进制位进行"异或"运算。运算规则: 0^0=0; 0^1=1; 1^0=1; 1^1=0; |
(A ^ B) 将得到 49,即为 0011 0001 |
~ | 对操作数的每一位执行逻辑取反操作,即将每一位的 0 变为 1,1 变为 0。 取反运算符,按二进制位进行"取反"运算。运算规则: ~1=-2; ~0=-1; |
(~A ) 将得到 -61,即为 1100 0011,一个有符号二进制数的补码形式。 |
<< | 将操作数的所有位向左移动指定的位数。左移 n 位相当于乘以 2 的 n 次方。 二进制左移运算符。将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)。 |
A << 2 将得到 240,即为 1111 0000 |
>> | 将操作数的所有位向右移动指定的位数。右移n位相当于除以 2 的 n 次方。 二进制右移运算符。将一个数的各二进制位全部右移若干位,正数左补 0,负数左补 1,右边丢弃。 |
A >> 2 将得到 15,即为 0000 1111 |
实例
请看下面的实例,了解 C 语言中所有可用的位运算符:
#include
int main()
{
unsigned int a = 60; /* 60 = 0011 1100 */
unsigned int b = 13; /* 13 = 0000 1101 */
int c = 0;
c = a & b; /* 12 = 0000 1100 */
printf("Line 1 - c 的值是 %d\n", c );
c = a | b; /* 61 = 0011 1101 */
printf("Line 2 - c 的值是 %d\n", c );
c = a ^ b; /* 49 = 0011 0001 */
printf("Line 3 - c 的值是 %d\n", c );
c = ~a; /*-61 = 1100 0011 */
printf("Line 4 - c 的值是 %d\n", c );
c = a << 2; /* 240 = 1111 0000 */
printf("Line 5 - c 的值是 %d\n", c );
c = a >> 2; /* 15 = 0000 1111 */
printf("Line 6 - c 的值是 %d\n", c );
}
当上面的代码被编译和执行时,它会产生下列结果:
Line 1 - c 的值是 12 Line 2 - c 的值是 61 Line 3 - c 的值是 49 Line 4 - c 的值是 -61 Line 5 - c 的值是 240 Line 6 - c 的值是 15
下表列出了 C 语言支持的赋值运算符:
运算符 | 描述 | 实例 |
---|---|---|
= | 简单的赋值运算符,把右边操作数的值赋给左边操作数 | C = A + B 将把 A + B 的值赋给 C |
+= | 加且赋值运算符,把右边操作数加上左边操作数的结果赋值给左边操作数 | C += A 相当于 C = C + A |
-= | 减且赋值运算符,把左边操作数减去右边操作数的结果赋值给左边操作数 | C -= A 相当于 C = C - A |
*= | 乘且赋值运算符,把右边操作数乘以左边操作数的结果赋值给左边操作数 | C *= A 相当于 C = C * A |
/= | 除且赋值运算符,把左边操作数除以右边操作数的结果赋值给左边操作数 | C /= A 相当于 C = C / A |
%= | 求模且赋值运算符,求两个操作数的模赋值给左边操作数 | C %= A 相当于 C = C % A |
<<= | 左移且赋值运算符 | C <<= 2 等同于 C = C << 2 |
>>= | 右移且赋值运算符 | C >>= 2 等同于 C = C >> 2 |
&= | 按位与且赋值运算符 | C &= 2 等同于 C = C & 2 |
^= | 按位异或且赋值运算符 | C ^= 2 等同于 C = C ^ 2 |
|= | 按位或且赋值运算符 | C |= 2 等同于 C = C | 2 |
实例
请看下面的实例,了解 C 语言中所有可用的赋值运算符:
实例
#include
int main()
{
int a = 21;
int c ;
c = a;
printf("Line 1 - = 运算符实例,c 的值 = %d\n", c );
c += a;
printf("Line 2 - += 运算符实例,c 的值 = %d\n", c );
c -= a;
printf("Line 3 - -= 运算符实例,c 的值 = %d\n", c );
c *= a;
printf("Line 4 - *= 运算符实例,c 的值 = %d\n", c );
c /= a;
printf("Line 5 - /= 运算符实例,c 的值 = %d\n", c );
c = 200;
c %= a;
printf("Line 6 - %%= 运算符实例,c 的值 = %d\n", c );
c <<= 2;
printf("Line 7 - <<= 运算符实例,c 的值 = %d\n", c );
c >>= 2;
printf("Line 8 - >>= 运算符实例,c 的值 = %d\n", c );
c &= 2;
printf("Line 9 - &= 运算符实例,c 的值 = %d\n", c );
c ^= 2;
printf("Line 10 - ^= 运算符实例,c 的值 = %d\n", c );
c |= 2;
printf("Line 11 - |= 运算符实例,c 的值 = %d\n", c );
}
当上面的代码被编译和执行时,它会产生下列结果:
Line 1 - = 运算符实例,c 的值 = 21 Line 2 - += 运算符实例,c 的值 = 42 Line 3 - -= 运算符实例,c 的值 = 21 Line 4 - *= 运算符实例,c 的值 = 441 Line 5 - /= 运算符实例,c 的值 = 21 Line 6 - %= 运算符实例,c 的值 = 11 Line 7 - <<= 运算符实例,c 的值 = 44 Line 8 - >>= 运算符实例,c 的值 = 11 Line 9 - &= 运算符实例,c 的值 = 2 Line 10 - ^= 运算符实例,c 的值 = 0 Line 11 - |= 运算符实例,c 的值 = 2
下表列出了 C 语言支持的其他一些重要的运算符,包括 sizeof 和 ? :。
运算符 | 描述 | 实例 |
---|---|---|
sizeof() | 返回变量的大小。 | sizeof(a) 将返回 4,其中 a 是整数。 |
& | 返回变量的地址。 | &a; 将给出变量的实际地址。 |
* | 指向一个变量。 | *a; 将指向一个变量。 |
? : | 条件表达式 | 如果条件为真 ? 则值为 X : 否则值为 Y |
实例
请看下面的实例,了解 C 语言中所有可用的杂项运算符:
实例
#include
int main()
{
int a = 4;
short b;
double c;
int* ptr;
/* sizeof 运算符实例 */
printf("Line 1 - 变量 a 的大小 = %lu\n", sizeof(a) );
printf("Line 2 - 变量 b 的大小 = %lu\n", sizeof(b) );
printf("Line 3 - 变量 c 的大小 = %lu\n", sizeof(c) );
/* & 和 * 运算符实例 */
ptr = &a; /* 'ptr' 现在包含 'a' 的地址 */
printf("a 的值是 %d\n", a);
printf("*ptr 是 %d\n", *ptr);
/* 三元运算符实例 */
a = 10;
b = (a == 1) ? 20: 30;
printf( "b 的值是 %d\n", b );
b = (a == 10) ? 20: 30;
printf( "b 的值是 %d\n", b );
}
当上面的代码被编译和执行时,它会产生下列结果:
Line 1 - 变量 a 的大小 = 4 Line 2 - 变量 b 的大小 = 2 Line 3 - 变量 c 的大小 = 8 a 的值是 4 *ptr 是 4 b 的值是 30 b 的值是 20
运算符的优先级确定表达式中项的组合。这会影响到一个表达式如何计算。某些运算符比其他运算符有更高的优先级,例如,乘除运算符具有比加减运算符更高的优先级。
例如 x = 7 + 3 * 2,在这里,x 被赋值为 13,而不是 20,因为运算符 * 具有比 + 更高的优先级,所以首先计算乘法 3*2,然后再加上 7。
下表将按运算符优先级从高到低列出各个运算符,具有较高优先级的运算符出现在表格的上面,具有较低优先级的运算符出现在表格的下面。在表达式中,较高优先级的运算符会优先被计算。
类别 | 运算符 | 结合性 |
---|---|---|
后缀 | () [] -> . ++ - - | 从左到右 |
一元 | + - ! ~ ++ - - (type)* & sizeof | 从右到左 |
乘除 | * / % | 从左到右 |
加减 | + - | 从左到右 |
移位 | << >> | 从左到右 |
关系 | < <= > >= | 从左到右 |
相等 | == != | 从左到右 |
位与 AND | & | 从左到右 |
位异或 XOR | ^ | 从左到右 |
位或 OR | | | 从左到右 |
逻辑与 AND | && | 从左到右 |
逻辑或 OR | || | 从左到右 |
条件 | ?: | 从右到左 |
赋值 | = += -= *= /= %=>>= <<= &= ^= |= | 从右到左 |
逗号 | , | 从左到右 |
实例
请看下面的实例,了解 C 语言中运算符的优先级:
实例
#include
main()
{
int a = 20;
int b = 10;
int c = 15;
int d = 5;
int e;
e = (a + b) * c / d; // ( 30 * 15 ) / 5
printf("(a + b) * c / d 的值是 %d\n", e );
e = ((a + b) * c) / d; // (30 * 15 ) / 5
printf("((a + b) * c) / d 的值是 %d\n" , e );
e = (a + b) * (c / d); // (30) * (15/5)
printf("(a + b) * (c / d) 的值是 %d\n", e );
e = a + (b * c) / d; // 20 + (150/5)
printf("a + (b * c) / d 的值是 %d\n" , e );
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
(a + b) * c / d 的值是 90 ((a + b) * c) / d 的值是 90 (a + b) * (c / d) 的值是 90 a + (b * c) / d 的值是 50
C 语言把任何非零和非空的值假定为 true,把零或 null 假定为 false。
一个 if 语句 由一个布尔表达式后跟一个或多个语句组成。
C 语言中 if 语句的语法:
if(boolean_expression)
{
/* 如果布尔表达式为真将执行的语句 */
}
实例
#include
int main ()
{
/* 局部变量定义 */
int a = 10;
/* 使用 if 语句检查布尔条件 */
if( a < 20 )
{
/* 如果条件为真,则输出下面的语句 */
printf("a 小于 20\n" );
}
printf("a 的值是 %d\n", a);
return 0;
}
语法
if(boolean_expression)
{
/* 如果布尔表达式为真将执行的语句 */
}
else
{
/* 如果布尔表达式为假将执行的语句 */
}
如果布尔表达式为 true,则执行 if 块内的代码。如果布尔表达式为 false,则执行 else 块内的代码。
实例
#include
int main ()
{
/* 局部变量定义 */
int a = 100;
/* 检查布尔条件 */
if( a < 20 )
{
/* 如果条件为真,则输出下面的语句 */
printf("a 小于 20\n" );
}
else
{
/* 如果条件为假,则输出下面的语句 */
printf("a 大于 20\n" );
}
printf("a 的值是 %d\n", a);
return 0;
}
一个 if 语句后可跟一个可选的 else if...else 语句,这可用于测试多种条件。
当使用 if...else if...else 语句时,以下几点需要注意:
语法
if(boolean_expression 1)
{
/* 当布尔表达式 1 为真时执行 */
}
else if( boolean_expression 2)
{
/* 当布尔表达式 2 为真时执行 */
}
else if( boolean_expression 3)
{
/* 当布尔表达式 3 为真时执行 */
}
else
{
/* 当上面条件都不为真时执行 */
}
实例
#include
int main ()
{
/* 局部变量定义 */
int a = 100;
/* 检查布尔条件 */
if( a == 10 )
{
/* 如果 if 条件为真,则输出下面的语句 */
printf("a 的值是 10\n" );
}
else if( a == 20 )
{
/* 如果 else if 条件为真,则输出下面的语句 */
printf("a 的值是 20\n" );
}
else if( a == 30 )
{
/* 如果 else if 条件为真,则输出下面的语句 */
printf("a 的值是 30\n" );
}
else
{
/* 如果上面条件都不为真,则输出下面的语句 */
printf("没有匹配的值\n" );
}
printf("a 的准确值是 %d\n", a );
return 0;
}
在 C 语言中,嵌套 if-else 语句是合法的,这意味着您可以在一个 if 或 else if 语句内使用另一个 if 或 else if 语句。
语法
if( boolean_expression 1)
{
/* 当布尔表达式 1 为真时执行 */
if(boolean_expression 2)
{
/* 当布尔表达式 2 为真时执行 */
}
}
一个 switch 语句允许测试一个变量等于多个值时的情况。每个值称为一个 case,且被测试的变量会对每个 switch case 进行检查。
语法
switch(expression){
case constant-expression :
statement(s);
break; /* 可选的 */
case constant-expression :
statement(s);
break; /* 可选的 */
/* 您可以有任意数量的 case 语句 */
default : /* 可选的 */
statement(s);
}
switch 语句必须遵循下面的规则:
#include
int main ()
{
/* 局部变量定义 */
char grade = 'B';
switch(grade)
{
case 'A' :
printf("很棒!\n" );
break;
case 'B' :
case 'C' :
printf("做得好\n" );
break;
case 'D' :
printf("您通过了\n" );
break;
case 'F' :
printf("最好再试一下\n" );
break;
default :
printf("无效的成绩\n" );
}
printf("您的成绩是 %c\n", grade );
return 0;
}
您可以把一个 switch 作为一个外部 switch 的语句序列的一部分,即可以在一个 switch 语句内使用另一个 switch 语句。即使内部和外部 switch 的 case 常量包含共同的值,也没有矛盾。
语法
switch(ch1) {
case 'A':
printf("这个 A 是外部 switch 的一部分" );
switch(ch2) {
case 'A':
printf("这个 A 是内部 switch 的一部分" );
break;
case 'B': /* 内部 B case 代码 */
}
break;
case 'B': /* 外部 B case 代码 */
}
实例
#include
int main ()
{
/* 局部变量定义 */
int a = 100;
int b = 200;
switch(a) {
case 100:
printf("这是外部 switch 的一部分\n");
switch(b) {
case 200:
printf("这是内部 switch 的一部分\n");
}
}
printf("a 的准确值是 %d\n", a );
printf("b 的准确值是 %d\n", b );
return 0;
}
条件运算符 ? :,可以用来替代 if...else 语句。它的一般形式如下:
Exp1 ? Exp2 : Exp3;
其中,Exp1、Exp2 和 Exp3 是表达式。请注意,冒号的使用和位置。
? 表达式的值是由 Exp1 决定的。如果 Exp1 为真,则计算 Exp2 的值,结果即为整个表达式的值。如果 Exp1 为假,则计算 Exp3 的值,结果即为整个表达式的值。
以下实例通过输入一个数字来判断它是否为奇数或偶数
#include
int main()
{
int num;
printf("输入一个数字 : ");
scanf("%d",&num);
(num%2==0)?printf("偶数"):printf("奇数");
}
while 循环
while 循环的语法:
while(condition)
{
statement(s);
}
在这里,statement(s) 可以是一个单独的语句,也可以是几个语句组成的代码块。
condition 可以是任意的表达式,当为任意非零值时都为 true。当条件为 true 时执行循环。 当条件为 false 时,退出循环,程序流将继续执行紧接着循环的下一条语句。
#include
int main ()
{
/* 局部变量定义 */
int a = 10;
/* while 循环执行 */
while( a < 20 )
{
printf("a 的值: %d\n", a);
a++;
}
return 0;
}
for 循环
for 循环的语法:
for ( init; condition; increment )
{
statement(s);
}
下面是 for 循环的控制流:
- init 会首先被执行,且只会执行一次。这一步允许您声明并初始化任何循环控制变量。您也可以不在这里写任何语句,只要有一个分号出现即可。
- 接下来,会判断 condition。如果为真,则执行循环主体。如果为假,则不执行循环主体,且控制流会跳转到紧接着 for 循环的下一条语句。
- 在执行完 for 循环主体后,控制流会跳回上面的 increment 语句。该语句允许您更新循环控制变量。该语句可以留空,只要在条件后有一个分号出现即可。
- 条件再次被判断。如果为真,则执行循环,这个过程会不断重复(循环主体,然后增加步值,再然后重新判断条件)。在条件变为假时,for 循环终止。
实例
#include
int main ()
{
/* for 循环执行 */
for( int a = 10; a < 20; a = a + 1 )
{
printf("a 的值: %d\n", a);
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
a 的值: 10 a 的值: 11 a 的值: 12 a 的值: 13 a 的值: 14 a 的值: 15 a 的值: 16 a 的值: 17 a 的值: 18 a 的值: 19
do...while 循环
不像 for 和 while 循环,它们是在循环头部测试循环条件。在 C 语言中,do...while 循环是在循环的尾部检查它的条件。
do...while 循环与 while 循环类似,但是 do...while 循环会确保至少执行一次循环。
do...while 循环的语法:
do
{
statement(s);
}while( condition );
条件表达式出现在循环的尾部,所以循环中的 statement(s) 会在条件被测试之前至少执行一次。
如果条件为真,控制流会跳转回上面的 do,然后重新执行循环中的 statement(s)。这个过程会不断重复,直到给定条件变为假为止。
#include
int main ()
{
/* 局部变量定义 */
int a = 10;
/* do 循环执行,在条件被测试之前至少执行一次 */
do
{
printf("a 的值: %d\n", a);
a = a + 1;
}while( a < 20 );
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
a 的值: 10 a 的值: 11 a 的值: 12 a 的值: 13 a 的值: 14 a 的值: 15 a 的值: 16 a 的值: 17 a 的值: 18 a 的值: 19
while 和 do while 区别
while 和 do while 都是 C 语言中的循环语句,它们的主要区别在于循环体执行的顺序。
while 循环首先检查循环条件,只有当条件为真时才执行循环体。因此,如果条件一开始就为假,那么循环体将永远不会执行。而如果条件一直为真,那么循环将一直执行下去。
do while 循环与 while 循环的主要区别在于它们执行循环体的顺序。do while 循环首先执行循环体,然后检查循环条件。因此,即使条件一开始就为假,循环体也会至少执行一次。
嵌套循环
嵌套 for 循环语句的语法:
for (initialization; condition; increment/decrement)
{
statement(s);
for (initialization; condition; increment/decrement)
{
statement(s);
... ... ...
}
... ... ...
}
嵌套 while 循环 语句的语法:
while (condition1)
{
statement(s);
while (condition2)
{
statement(s);
... ... ...
}
... ... ...
}
嵌套 do...while 循环 语句的语法:
do
{
statement(s);
do
{
statement(s);
... ... ...
}while (condition2);
... ... ...
}while (condition1);
break 语句
break 语句有以下两种用法:
嵌套循环(即一个循环内嵌套另一个循环),break 语句会停止执行最内层的循环,然后开始执行该块之后的下一行代码。
语法
break;
流程图
实例
#include
int main ()
{
/* 局部变量定义 */
int a = 10;
/* while 循环执行 */
while( a < 20 )
{
printf("a 的值: %d\n", a);
a++;
if( a > 15)
{
/* 使用 break 语句终止循环 */
break;
}
}
return 0;
}
continue 语句
C 语言中的 continue 语句有点像 break 语句。但它不是强制终止,continue 会跳过当前循环中的代码,强迫开始下一次循环。
对于 for 循环,continue 语句执行后自增语句仍然会执行。对于 while 和 do...while 循环,continue 语句重新执行条件判断语句。
continue 语句的语法:
continue;
流程图
实例
#include
int main ()
{
/* 局部变量定义 */
int a = 10;
/* do 循环执行 */
do
{
if( a == 15)
{
/* 跳过迭代 */
a = a + 1;
continue;
}
printf("a 的值: %d\n", a);
a++;
}while( a < 20 );
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
a 的值: 10 a 的值: 11 a 的值: 12 a 的值: 13 a 的值: 14 a 的值: 16 a 的值: 17 a 的值: 18 a 的值: 19
goto 语句
C 语言中的 goto 语句允许把控制无条件转移到同一函数内的被标记的语句。
注意:在任何编程语言中,都不建议使用 goto 语句。因为它使得程序的控制流难以跟踪,使程序难以理解和难以修改。任何使用 goto 语句的程序可以改写成不需要使用 goto 语句的写法。
goto 语句的语法:
goto label;
..
.
label: statement;注:label 可以是任何除 C 关键字以外的纯文本,它可以设置在 C 程序中 goto 语句的前面或者后面。
流程图
实例
#include
int main ()
{
/* 局部变量定义 */
int a = 10;
/* do 循环执行 */
LOOP:do
{
if( a == 15)
{
/* 跳过迭代 */
a = a + 1;
goto LOOP;
}
printf("a 的值: %d\n", a);
a++;
}while( a < 20 );
return 0;
}
无限循环
如果条件永远不为假,则循环将变成无限循环。for 循环在传统意义上可用于实现无限循环。由于构成循环的三个表达式中任何一个都不是必需的,您可以将某些条件表达式留空来构成一个无限循环。
当条件表达式不存在时,它被假设为真。您也可以设置一个初始值和增量表达式,但是一般情况下,C 程序员偏向于使用 for(;;) 结构来表示一个无限循环。
函数是一组一起执行一个任务的语句。每个 C 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数。
您可以把代码划分到不同的函数中。如何划分代码到不同的函数中是由您来决定的,但在逻辑上,划分通常是根据每个函数执行一个特定的任务来进行的。
函数声明告诉编译器函数的名称、返回类型和参数。函数定义提供了函数的实际主体。
C 标准库提供了大量的程序可以调用的内置函数。例如,函数 strcat() 用来连接两个字符串,函数 memcpy() 用来复制内存到另一个位置。
函数还有很多叫法,比如方法、子例程或程序,等等。
C 语言中的函数定义的一般形式如下:
return_type function_name( parameter list )
{
body of the function
}
在 C 语言中,函数由一个函数头和一个函数主体组成。下面列出一个函数的所有组成部分:
实例
以下是 max() 函数的源代码。该函数有两个参数 num1 和 num2,会返回这两个数中较大的那个数:
/* 函数返回两个数中较大的那个数 */
int max(int num1, int num2)
{
/* 局部变量声明 */
int result;
if (num1 > num2) {
result = num1;
} else {
result = num2;
}
return result;
}
函数声明会告诉编译器函数名称及如何调用函数。函数的实际主体可以单独定义。
函数声明包括以下几个部分:
return_type function_name( parameter list );
针对上面定义的函数 max(),以下是函数声明:
int max(int num1, int num2);
在函数声明中,参数的名称并不重要,只有参数的类型是必需的,因此下面也是有效的声明:
int max(int, int);
当您在一个源文件中定义函数且在另一个文件中调用函数时,函数声明是必需的。在这种情况下,您应该在调用函数的文件顶部声明函数。
创建 C 函数时,会定义函数做什么,然后通过调用函数来完成已定义的任务。
当程序调用函数时,程序控制权会转移给被调用的函数。被调用的函数执行已定义的任务,当函数的返回语句被执行时,或到达函数的结束括号时,会把程序控制权交还给主程序。
调用函数时,传递所需参数,如果函数返回一个值,则可以存储返回值。例如:
#include
/* 函数声明 */
int max(int num1, int num2);
int main ()
{
/* 局部变量定义 */
int a = 100;
int b = 200;
int ret;
/* 调用函数来获取最大值 */
ret = max(a, b);
printf( "Max value is : %d\n", ret );
return 0;
}
/* 函数返回两个数中较大的那个数 */
int max(int num1, int num2)
{
/* 局部变量声明 */
int result;
if (num1 > num2)
result = num1;
else
result = num2;
return result;
}
把 max() 函数和 main() 函数放一块,编译源代码。当运行最后的可执行文件时,会产生下列结果:
Max value is : 200
如果函数要使用参数,则必须声明接受参数值的变量。这些变量称为函数的形式参数。
形式参数就像函数内的其他局部变量,在进入函数时被创建,退出函数时被销毁。
当调用函数时,有两种向函数传递参数的方式:
调用类型 | 描述 |
---|---|
传值调用 | 该方法把参数的实际值复制给函数的形式参数。在这种情况下,修改函数内的形式参数不会影响实际参数。 |
引用调用 | 通过指针传递方式,形参为指向实参地址的指针,当对形参的指向操作时,就相当于对实参本身进行的操作。 |
默认情况下,C 使用传值调用来传递参数。一般来说,这意味着函数内的代码不能改变用于调用函数的实际参数。
任何一种编程中,作用域是程序中定义的变量所存在的区域,超过该区域变量就不能被访问。C 语言中有三个地方可以声明变量:
在某个函数或块的内部声明的变量称为局部变量。它们只能被该函数或该代码块内部的语句使用。局部变量在函数外部是不可知的。下面是使用局部变量的实例。在这里,所有的变量 a、b 和 c 是 main() 函数的局部变量。
#include
int main ()
{
/* 局部变量声明 */
int a, b;
int c;
/* 实际初始化 */
a = 10;
b = 20;
c = a + b;
printf ("value of a = %d, b = %d and c = %d\n", a, b, c);
return 0;
}
全局变量是定义在函数外部,通常是在程序的顶部。全局变量在整个程序生命周期内都是有效的,在任意的函数内部能访问全局变量。
全局变量可以被任何函数访问。也就是说,全局变量在声明后整个程序中都是可用的。下面是使用全局变量和局部变量的实例:
#include
/* 全局变量声明 */
int g;
int main ()
{
/* 局部变量声明 */
int a, b;
/* 实际初始化 */
a = 10;
b = 20;
g = a + b;
printf ("value of a = %d, b = %d and g = %d\n", a, b, g);
return 0;
}
在程序中,局部变量和全局变量的名称可以相同,但是在函数内,如果两个名字相同,会使用局部变量值,全局变量不会被使用。下面是一个实例:
在程序中,局部变量和全局变量的
#include
/* 全局变量声明 */
int g = 20;
int main ()
{
/* 局部变量声明 */
int g = 10;
printf ("value of g = %d\n", g);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
value of g = 10
函数的参数,形式参数,被当作该函数内的局部变量,如果与全局变量同名它们会优先使用。下面是一个实例:
#include
/* 全局变量声明 */
int a = 20;
int main ()
{
/* 在主函数中的局部变量声明 */
int a = 10;
int b = 20;
int c = 0;
int sum(int, int);
printf ("value of a in main() = %d\n", a);
c = sum( a, b);
printf ("value of c in main() = %d\n", c);
return 0;
}
/* 添加两个整数的函数 */
int sum(int a, int b)
{
printf ("value of a in sum() = %d\n", a);
printf ("value of b in sum() = %d\n", b);
return a + b;
}
当上面的代码被编译和执行时,它会产生下列结果:
value of a in main() = 10 value of a in sum() = 10 value of b in sum() = 20 value of c in main() = 30
全局变量与局部变量在内存中的区别:
当局部变量被定义时,系统不会对其初始化,您必须自行对其初始化。定义全局变量时,系统会自动对其初始化,如下所示:
数据类型 | 初始化默认值 |
---|---|
int | 0 |
char | '\0' |
float | 0 |
double | 0 |
pointer | NULL |
正确地初始化变量是一个良好的编程习惯,否则有时候程序可能会产生意想不到的结果,因为未初始化的变量会导致一些在内存位置中已经可用的垃圾值。
C 语言支持数组数据结构,它可以存储一个固定大小的相同类型元素的顺序集合。数组是用来存储一系列数据,但它往往被认为是一系列相同类型的变量。
数组的声明并不是声明一个个单独的变量,比如 runoob0、runoob1、...、runoob99,而是声明一个数组变量,比如 runoob,然后使用 runoob[0]、runoob[1]、...、runoob[99] 来代表一个个单独的变量。
所有的数组都是由连续的内存位置组成。最低的地址对应第一个元素,最高的地址对应最后一个元素。
数组中的特定元素可以通过索引访问,第一个索引值为 0。
C 语言还允许我们使用指针来处理数组,这使得对数组的操作更加灵活和高效。
在 C 中要声明一个数组,需要指定元素的类型和元素的数量,如下所示:
type arrayName [ arraySize ];
这叫做一维数组。arraySize 必须是一个大于零的整数常量,type 可以是任意有效的 C 数据类型。例如,要声明一个类型为 double 的包含 10 个元素的数组 balance,声明语句如下:
double balance[10];
现在 balance 是一个可用的数组,可以容纳 10 个类型为 double 的数字。
在 C 中,可以逐个初始化数组,也可以使用一个初始化语句,如下所示:
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};
大括号 { } 之间的值的数目不能大于我们在数组声明时在方括号 [ ] 中指定的元素数目。
如果您省略掉了数组的大小,数组的大小则为初始化时元素的个数。因此,如果:
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};
您将创建一个数组,它与前一个实例中所创建的数组是完全相同的。下面是一个为数组中某个元素赋值的实例:
balance[4] = 50.0;
上述的语句把数组中第五个元素的值赋为 50.0。所有的数组都是以 0 作为它们第一个元素的索引,也被称为基索引,数组的最后一个索引是数组的总大小减去 1。以下是上面所讨论的数组的的图形表示:
下图是一个长度为 10 的数组,第一个元素的索引值为 0,第九个元素 runoob 的索引值为 8:
数组元素可以通过数组名称加索引进行访问。元素的索引是放在方括号内,跟在数组名称的后边。例如:
double salary = balance[9];
上面的语句将把数组中第 10 个元素的值赋给 salary 变量。下面的实例使用了上述的三个概念,即,声明数组、数组赋值、访问数组:
#include
int main ()
{
int n[ 10 ]; /* n 是一个包含 10 个整数的数组 */
int i,j;
/* 初始化数组元素 */
for ( i = 0; i < 10; i++ )
{
n[ i ] = i + 100; /* 设置元素 i 为 i + 100 */
}
/* 输出数组中每个元素的值 */
for (j = 0; j < 10; j++ )
{
printf("Element[%d] = %d\n", j, n[j] );
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Element[0] = 100 Element[1] = 101 Element[2] = 102 Element[3] = 103 Element[4] = 104 Element[5] = 105 Element[6] = 106 Element[7] = 107 Element[8] = 108 Element[9] = 109
数组长度可以使用 sizeof 运算符来获取数组的长度,例如:
int numbers[] = {1, 2, 3, 4, 5};
int length = sizeof(numbers) / sizeof(numbers[0]);
#include
int main() {
int array[] = {1, 2, 3, 4, 5};
int length = sizeof(array) / sizeof(array[0]);
printf("数组长度为: %d\n", length);
return 0;
}
使用宏定义:
#include
#define LENGTH(array) (sizeof(array) / sizeof(array[0])) int main() { int array[] = {1, 2, 3, 4, 5}; int length = LENGTH(array); printf("数组长度为: %d\n", length); return 0; }
以上实例输出结果为:
数组长度为: 5
在 C 语言中,数组名表示数组的地址,即数组首元素的地址。当我们在声明和定义一个数组时,该数组名就代表着该数组的地址。
例如,在以下代码中:
int myArray[5] = {10, 20, 30, 40, 50};
在这里,myArray 是数组名,它表示整数类型的数组,包含 5 个元素。myArray 也代表着数组的地址,即第一个元素的地址。
数组名本身是一个常量指针,意味着它的值是不能被改变的,一旦确定,就不能再指向其他地方。
我们可以使用&运算符来获取数组的地址,如下所示:
int myArray[5] = {10, 20, 30, 40, 50};
int *ptr = &myArray[0]; // 或者直接写作 int *ptr = myArray;
在上面的例子中,ptr 指针变量被初始化为 myArray 的地址,即数组的第一个元素的地址。
需要注意的是,虽然数组名表示数组的地址,但在大多数情况下,数组名会自动转换为指向数组首元素的指针。这意味着我们可以直接将数组名用于指针运算,例如在函数传递参数或遍历数组时:
void printArray(int arr[], int size) {
for (int i = 0; i < size; i++) {
printf("%d ", arr[i]); // 数组名arr被当作指针使用
}
}
int main() {
int myArray[5] = {10, 20, 30, 40, 50};
printArray(myArray, 5); // 将数组名传递给函数
return 0;
}
在上述代码中,printArray 函数接受一个整数数组和数组大小作为参数,我们将 myArray 数组名传递给函数,函数内部可以像使用指针一样使用 arr 数组名。
在 C 中,数组是非常重要的,我们需要了解更多有关数组的细节。下面列出了 C 程序员必须清楚的一些与数组相关的重要概念:
概念 | 描述 |
---|---|
多维数组 | C 支持多维数组。多维数组最简单的形式是二维数组。 |
传递数组给函数 | 您可以通过指定不带索引的数组名称来给函数传递一个指向数组的指针。 |
从函数返回数组 | C 允许从函数返回数组。 |
指向数组的指针 | 您可以通过指定不带索引的数组名称来生成一个指向数组中第一个元素的指针。 |
静态数组与动态数组 | 静态数组在编译时分配内存,大小固定,而动态数组在运行时手动分配内存,大小可变。 |
多维数组声明的一般形式如下:
type name[size1][size2]...[sizeN];
例如,下面的声明创建了一个三维 5 . 10 . 4 整型数组:
int threedim[5][10][4];
多维数组最简单的形式是二维数组。一个二维数组,在本质上,是一个一维数组的列表。声明一个 x 行 y 列的二维整型数组,形式如下:
type arrayName [ x ][ y ];
其中,type 可以是任意有效的 C 数据类型,arrayName 是一个有效的 C 标识符。一个二维数组可以被认为是一个带有 x 行和 y 列的表格。下面是一个二维数组,包含 3 行和 4 列:
int x[3][4];
初始化二维数组
多维数组可以通过在括号内为每行指定值来进行初始化。下面是一个带有 3 行 4 列的数组。
int a[3][4] = {
{0, 1, 2, 3} , /* 初始化索引号为 0 的行 */
{4, 5, 6, 7} , /* 初始化索引号为 1 的行 */
{8, 9, 10, 11} /* 初始化索引号为 2 的行 */
};
内部嵌套的括号是可选的,下面的初始化与上面是等同的:
int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};
访问二维数组元素
二维数组中的元素是通过使用下标(即数组的行索引和列索引)来访问的。例如:
int val = a[2][3];
上面的语句将获取数组中第 3 行第 4 个元素。您可以通过上面的示意图来进行验证。让我们来看看下面的程序,我们将使用嵌套循环来处理二维数组:
#include
int main ()
{
/* 一个带有 5 行 2 列的数组 */
int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};
int i, j;
/* 输出数组中每个元素的值 */
for ( i = 0; i < 5; i++ )
{
for ( j = 0; j < 2; j++ )
{
printf("a[%d][%d] = %d\n", i,j, a[i][j] );
}
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
a[0][0] = 0
a[0][1] = 0
a[1][0] = 1
a[1][1] = 2
a[2][0] = 2
a[2][1] = 4
a[3][0] = 3
a[3][1] = 6
a[4][0] = 4
a[4][1] = 8
如果您想要在函数中传递一个一维数组作为参数,您必须以下面三种方式来声明函数形式参数,这三种声明方式的结果是一样的,因为每种方式都会告诉编译器将要接收一个整型指针。同样地,您也可以传递一个多维数组作为形式参数。
形式参数是一个指针(您可以在下一章中学习到有关指针的知识):
void myFunction(int *param)
{
.
.
.
}
形式参数是一个已定义大小的数组:
void myFunction(int param[10])
{
.
.
.
}
形式参数是一个未定义大小的数组:
void myFunction(int param[])
{
.
.
.
}
实例
看下面这个函数,它把数组作为参数,同时还传递了另一个参数,根据所传的参数,会返回数组中元素的平均值:
double getAverage(int arr[], int size)
{
int i;
double avg;
double sum;
for (i = 0; i < size; ++i)
{
sum += arr[i];
}
avg = sum / size;
return avg;
}
现在,让我们调用上面的函数,如下所示:
#include
/* 函数声明 */
double getAverage(int arr[], int size);
int main ()
{
/* 带有 5 个元素的整型数组 */
int balance[5] = {1000, 2, 3, 17, 50};
double avg;
/* 传递一个指向数组的指针作为参数 */
avg = getAverage( balance, 5 ) ;
/* 输出返回值 */
printf( "平均值是: %f ", avg );
return 0;
}
double getAverage(int arr[], int size)
{
int i;
double avg;
double sum=0;
for (i = 0; i < size; ++i)
{
sum += arr[i];
}
avg = sum / size;
return avg;
}
当上面的代码被编译和执行时,它会产生下列结果:
平均值是: 214.400000
C 语言不允许返回一个完整的数组作为函数的参数。但是,您可以通过指定不带索引的数组名来返回一个指向数组的指针。我们将在下一章中讲解有关指针的知识,您可以先跳过本章,等了解了 C 指针的概念之后,再来学习本章的内容。
如果您想要从函数返回一个一维数组,您必须声明一个返回指针的函数,如下:
int * myFunction()
{
.
.
.
}
另外,C 不支持在函数外返回局部变量的地址,除非定义局部变量为 static 变量。
现在,让我们来看下面的函数,它会生成 10 个随机数,并使用数组来返回它们,具体如下:
#include
#include
#include
/* 要生成和返回随机数的函数 */
int * getRandom( )
{
static int r[10];
int i;
/* 设置种子 */
srand( (unsigned)time( NULL ) );
for ( i = 0; i < 10; ++i)
{
r[i] = rand();
printf( "r[%d] = %d\n", i, r[i]);
}
return r;
}
/* 要调用上面定义函数的主函数 */
int main ()
{
/* 一个指向整数的指针 */
int *p;
int i;
p = getRandom();
for ( i = 0; i < 10; i++ )
{
printf( "*(p + %d) : %d\n", i, *(p + i));
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
r[0] = 313959809 r[1] = 1759055877 r[2] = 1113101911 r[3] = 2133832223 r[4] = 2073354073 r[5] = 167288147 r[6] = 1827471542 r[7] = 834791014 r[8] = 1901409888 r[9] = 1990469526 *(p + 0) : 313959809 *(p + 1) : 1759055877 *(p + 2) : 1113101911 *(p + 3) : 2133832223 *(p + 4) : 2073354073 *(p + 5) : 167288147 *(p + 6) : 1827471542 *(p + 7) : 834791014 *(p + 8) : 1901409888 *(p + 9) : 1990469526
组名本身是一个常量指针,意味着它的值是不能被改变的,一旦确定,就不能再指向其他地方。
因此,在下面的声明中:
double balance[50];
balance 是一个指向 &balance[0] 的指针,即数组 balance 的第一个元素的地址。因此,下面的程序片段把 p 赋值为 balance 的第一个元素的地址:
double *p;
double balance[10];
p = balance;
使用数组名作为常量指针是合法的,反之亦然。因此,*(balance + 4) 是一种访问 balance[4] 数据的合法方式。
一旦您把第一个元素的地址存储在 p 中,您就可以使用 *p、*(p+1)、*(p+2) 等来访问数组元素。下面的实例演示了上面讨论到的这些概念:
#include
int main ()
{
/* 带有 5 个元素的整型数组 */
double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};
double *p;
int i;
p = balance;
/* 输出数组中每个元素的值 */
printf( "使用指针的数组值\n");
for ( i = 0; i < 5; i++ )
{
printf("*(p + %d) : %f\n", i, *(p + i) );
}
printf( "使用 balance 作为地址的数组值\n");
for ( i = 0; i < 5; i++ )
{
printf("*(balance + %d) : %f\n", i, *(balance + i) );
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
使用指针的数组值 *(p + 0) : 1000.000000 *(p + 1) : 2.000000 *(p + 2) : 3.400000 *(p + 3) : 17.000000 *(p + 4) : 50.000000 使用 balance 作为地址的数组值 *(balance + 0) : 1000.000000 *(balance + 1) : 2.000000 *(balance + 2) : 3.400000 *(balance + 3) : 17.000000 *(balance + 4) : 50.000000
在 C 语言中,有两种类型的数组:
静态数组的生命周期与作用域相关,而动态数组的生命周期由程序员控制。
在使用动态数组时,需要注意合理地分配和释放内存,以避免内存泄漏和访问无效内存的问题。
静态数组是在编译时声明并分配内存空间的数组。
静态数组具有固定的大小,在声明数组时需要指定数组的长度。
静态数组的特点包括:
静态数组的声明和初始化示例:
int staticArray[5]; // 静态数组声明
int staticArray[] = {1, 2, 3, 4, 5}; // 静态数组声明并初始化
对于静态数组,可以使用 sizeof 运算符来获取数组长度,例如:
int array[] = {1, 2, 3, 4, 5};
int length = sizeof(array) / sizeof(array[0]);
以上代码中 sizeof(array) 返回整个数组所占用的字节数,而 sizeof(array[0]) 返回数组中单个元素的字节数,将两者相除,就得到了数组的长度。
以上是一个简单的静态数组实例:
#include
int main() {
int staticArray[] = {1, 2, 3, 4, 5}; // 静态数组声明并初始化
int length = sizeof(staticArray) / sizeof(staticArray[0]);
printf("静态数组: ");
for (int i = 0; i < length; i++) {
printf("%d ", staticArray[i]);
}
printf("\n");
return 0;
}
以上实例中,我们声明并初始化了一个静态数组 staticArray,它包含了 5 个整数元素,然后我们通过 sizeof 运算符,我们计算了静态数组的长度,并使用循环遍历并打印数组的元素。
输出结果:
静态数组: 1 2 3 4 5
动态数组是在运行时通过动态内存分配函数(如 malloc 和 calloc)手动分配内存的数组。
动态数组特点如下:
malloc
、calloc
等函数来申请内存,并使用 free
函数来释放内存。realloc
函数来重新分配内存,并改变数组的大小。动态数组的声明、内存分配和释放实例:
int size = 5;
int *dynamicArray = (int *)malloc(size * sizeof(int)); // 动态数组内存分配
// 使用动态数组
free(dynamicArray); // 动态数组内存释放
动态分配的数组,可以在动态分配内存时保存数组长度,并在需要时使用该长度,例如:
int size = 5; // 数组长度
int *array = malloc(size * sizeof(int));
// 使用数组
free(array); // 释放内存
上代码我们使用 malloc 函数动态分配了一个整型数组,并将长度保存在变量 size 中。然后可以根据需要使用这个长度进行操作,在使用完数组后,使用 free 函数释放内存。
注意:动态数组的使用需要注意内存管理的问题,确保在不再需要使用数组时释放内存,避免内存泄漏和访问无效的内存位置。
以下是一个简单的动态数组使用实例:
#include
#include
int main() {
int size = 5;
int *dynamicArray = (int *)malloc(size * sizeof(int)); // 动态数组内存分配
if (dynamicArray == NULL) {
printf("Memory allocation failed.\n");
return 1;
}
printf("Enter %d elements: ", size);
for (int i = 0; i < size; i++) {
scanf("%d", &dynamicArray[i]);
}
printf("Dynamic Array: ");
for (int i = 0; i < size; i++) {
printf("%d ", dynamicArray[i]);
}
printf("\n");
free(dynamicArray); // 动态数组内存释放
return 0;
}
以上实例中,我们首先声明了一个变量 size 来指定动态数组的大小。
然后使用 malloc 函数为动态数组分配内存,并通过 sizeof 运算符计算所需的内存大小。
接下来,通过循环和 scanf 函数,从用户输入中读取元素值并存储到动态数组中。
最后,使用循环遍历并打印动态数组的元素。在程序结束时,使用 free 函数释放动态数组所占用的内存。
请注意,在使用动态数组时,需要检查内存分配是否成功(即 dynamicArray 是否为 NULL),以避免在内存分配失败时发生错误。
枚举是 C 语言中的一种基本数据类型,用于定义一组具有离散值的常量。,它可以让数据更简洁,更易读。
枚举类型通常用于为程序中的一组相关的常量取名字,以便于程序的可读性和维护性。
定义一个枚举类型,需要使用 enum 关键字,后面跟着枚举类型的名称,以及用大括号 {} 括起来的一组枚举常量。每个枚举常量可以用一个标识符来表示,也可以为它们指定一个整数值,如果没有指定,那么默认从 0 开始递增。
枚举语法定义格式为:
enum 枚举名 {枚举元素1,枚举元素2,……};
接下来我们举个例子,比如:一星期有 7 天,如果不用枚举,我们需要使用 #define 来为每个整数定义一个别名:
#define MON 1
#define TUE 2
#define WED 3
#define THU 4
#define FRI 5
#define SAT 6
#define SUN 7
这个看起来代码量就比较多,接下来我们看看使用枚举的方式:
enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
};
这样看起来是不是更简洁了。
注意:第一个枚举成员的默认值为整型的 0,后续枚举成员的值在前一个成员上加 1。我们在这个实例中把第一个枚举成员的值定义为 1,第二个就为 2,以此类推。
可以在定义枚举类型时改变枚举元素的值:
enum season {spring, summer=3, autumn, winter};
前面我们只是声明了枚举类型,接下来我们看看如何定义枚举变量。
我们可以通过以下三种方式来定义枚举变量
1、先定义枚举类型,再定义枚举变量
enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
};
enum DAY day;
2、定义枚举类型的同时定义枚举变量
enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;
3、省略枚举名称,直接定义枚举变量
enum
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;
#include
enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
};
int main()
{
enum DAY day;
day = WED;
printf("%d",day);
return 0;
}
以上实例输出结果为:
3
在C 语言中,枚举类型是被当做 int 或者 unsigned int 类型来处理的,所以按照 C 语言规范是没有办法遍历枚举类型的。
不过在一些特殊的情况下,枚举类型必须连续是可以实现有条件的遍历。
以下实例使用 for 来遍历枚举的元素:
#include
enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;
int main()
{
// 遍历枚举元素
for (day = MON; day <= SUN; day++) {
printf("枚举元素:%d \n", day);
}
}
以上实例输出结果为:
枚举元素:1 枚举元素:2 枚举元素:3 枚举元素:4 枚举元素:5 枚举元素:6 枚举元素:7
以下枚举类型不连续,这种枚举无法遍历。
enum
{
ENUM_0,
ENUM_10 = 10,
ENUM_11
};
枚举在 switch 中的使用:
#include
#include
int main()
{
enum color { red=1, green, blue };
enum color favorite_color;
/* 用户输入数字来选择颜色 */
printf("请输入你喜欢的颜色: (1. red, 2. green, 3. blue): ");
scanf("%u", &favorite_color);
/* 输出结果 */
switch (favorite_color)
{
case red:
printf("你喜欢的颜色是红色");
break;
case green:
printf("你喜欢的颜色是绿色");
break;
case blue:
printf("你喜欢的颜色是蓝色");
break;
default:
printf("你没有选择你喜欢的颜色");
}
return 0;
}
以上实例输出结果为:
请输入你喜欢的颜色: (1. red, 2. green, 3. blue): 1 你喜欢的颜色是红色
以下实例将整数转换为枚举:
#include
#include
int main()
{
enum day
{
saturday,
sunday,
monday,
tuesday,
wednesday,
thursday,
friday
} workday;
int a = 1;
enum day weekend;
weekend = ( enum day ) a; //类型转换
//weekend = a; //错误
printf("weekend:%d",weekend);
return 0;
}
以上实例输出结果为:
weekend:1
每一个变量都有一个内存位置,每一个内存位置都定义了可使用 & 运算符访问的地址,它表示了在内存中的一个地址。
请看下面的实例,它将输出定义的变量地址:
#include
int main ()
{
int var_runoob = 10;
int *p; // 定义指针变量
p = &var_runoob;
printf("var_runoob 变量的地址: %p\n", p);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
var_runoob 变量的地址: 0x7ffeeaae08d8
指针也就是内存地址,指针变量是用来存放内存地址的变量。就像其他变量或常量一样,您必须在使用指针存储其他变量地址之前,对其进行声明。指针变量声明的一般形式为:
type *var_name;
在这里,type 是指针的基类型,它必须是一个有效的 C 数据类型,var_name 是指针变量的名称。用来声明指针的星号 * 与乘法中使用的星号是相同的。但是,在这个语句中,星号是用来指定一个变量是指针。以下是有效的指针声明:
int *ip; /* 一个整型的指针 */
double *dp; /* 一个 double 型的指针 */
float *fp; /* 一个浮点型的指针 */
char *ch; /* 一个字符型的指针 */
所有实际数据类型,不管是整型、浮点型、字符型,还是其他的数据类型,对应指针的值的类型都是一样的,都是一个代表内存地址的长的十六进制数。
不同数据类型的指针之间唯一的不同是,指针所指向的变量或常量的数据类型不同。
为什么指针都是指向地址,还要定义指针类型
数据类型匹配:指针类型确保了指针指向的数据与指针本身的数据类型匹配。这有助于避免在访问或修改指针指向的数据时出现类型不匹配的错误。
内存分配:指针类型还用于确定在内存中分配多少空间以存储指针指向的数据。不同的数据类型需要不同的内存空间,指针类型告诉编译器要分配多少内存。
指针算术:指针类型还用于指定在对指针执行算术操作时,应如何移动指针以正确访问数据的下一个元素。这对于数组、结构体等数据结构的处理非常重要。
数据解析:编译器使用指针类型来解析指针所指向的数据。这使得编译器能够正确处理指针的解引用和数据类型转换操作。
内存操作:指针允许程序直接访问和修改内存中的数据。这对于动态内存分配和释放以及高效的数据操作非常有用。
数据结构:指针在数据结构中的使用很常见。它们用于创建链表、树、图等复杂的数据结构,允许在内存中有效地组织和操作数据。
动态内存分配:指针允许在运行时分配和释放内存,这对于管理变量的生命周期非常有用。C和C++等语言中的malloc
和free
函数用于动态内存管理。
函数参数传递:指针可以用作函数参数,以便将数据的地址传递给函数,而不是传递整个数据。这可以提高程序的性能,尤其是对于大型数据结构。
字符串处理:在C语言中,字符串通常是字符数组,指针用于遍历和修改字符串中的字符。
数组操作:指针可以用来遍历数组元素,进行数组操作,以及实现高效的数组算法。
管理资源:指针可以用于管理外部资源,如文件句柄、网络连接等。
函数指针:C和C++等语言允许使用函数指针,这对于实现回调函数、动态函数调用和策略模式等非常有用。
优化性能:指针可以用于实现底层内存操作,以优化性能。这对于编写系统级或嵌入式软件非常重要。
使用指针时会频繁进行以下几个操作:定义一个指针变量、把变量地址赋值给指针、访问指针变量中可用地址的值。这些是通过使用一元运算符 * 来返回位于操作数所指定地址的变量的值。下面的实例涉及到了这些操作:
#include
int main ()
{
int var = 20; /* 实际变量的声明 */
int *ip; /* 指针变量的声明 */
ip = &var; /* 在指针变量中存储 var 的地址 */
printf("var 变量的地址: %p\n", &var );
/* 在指针变量中存储的地址 */
printf("ip 变量存储的地址: %p\n", ip );
/* 使用指针访问值 */
printf("*ip 变量的值: %d\n", *ip );
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
var 变量的地址: 0x7ffeeef168d8 ip 变量存储的地址: 0x7ffeeef168d8 *ip 变量的值: 20
在变量声明的时候,如果没有确切的地址可以赋值,为指针变量赋一个 NULL 值是一个良好的编程习惯。赋为 NULL 值的指针被称为空指针。
NULL 指针是一个定义在标准库中的值为零的常量。请看下面的程序:
#include
int main ()
{
int *ptr = NULL;
printf("ptr 的地址是 %p\n", ptr );
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
ptr 的地址是 0x0
在大多数的操作系统上,程序不允许访问地址为 0 的内存,因为该内存是操作系统保留的。然而,内存地址 0 有特别重要的意义,它表明该指针不指向一个可访问的内存位置。但按照惯例,如果指针包含空值(零值),则假定它不指向任何东西。
如需检查一个空指针,您可以使用 if 语句,如下所示:
if(ptr) /* 如果 p 非空,则完成 */
if(!ptr) /* 如果 p 为空,则完成 */
C 指针是一个用数值表示的地址。因此,您可以对指针执行算术运算。可以对指针进行四种算术运算:++、--、+、-。
假设 ptr 是一个指向地址 1000 的整型指针,是一个 32 位的整数,让我们对该指针执行下列的算术运算:
ptr++
在执行完上述的运算之后,ptr 将指向位置 1004,因为 ptr 每增加一次,它都将指向下一个整数位置,即当前位置往后移 4 字节。这个运算会在不影响内存位置中实际值的情况下,移动指针到下一个内存位置。如果 ptr 指向一个地址为 1000 的字符,上面的运算会导致指针指向位置 1001,因为下一个字符位置是在 1001。
我们概括一下:
我们喜欢在程序中使用指针代替数组,因为变量指针可以递增,而数组不能递增,数组可以看成一个指针常量。下面的程序递增变量指针,以便顺序访问数组中的每一个元素:
#include
const int MAX = 3;
int main ()
{
int var[] = {10, 100, 200};
int i, *ptr;
/* 指针中的数组地址 */
ptr = var;
for ( i = 0; i < MAX; i++)
{
printf("存储地址:var[%d] = %p\n", i, ptr );
printf("存储值:var[%d] = %d\n", i, *ptr );
/* 指向下一个位置 */
ptr++;
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
存储地址:var[0] = e4a298cc 存储值:var[0] = 10 存储地址:var[1] = e4a298d0 存储值:var[1] = 100 存储地址:var[2] = e4a298d4 存储值:var[2] = 200
同样地,对指针进行递减运算,即把值减去其数据类型的字节数,如下所示:
#include
const int MAX = 3;
int main ()
{
int var[] = {10, 100, 200};
int i, *ptr;
/* 指针中最后一个元素的地址 */
ptr = &var[MAX-1];
for ( i = MAX; i > 0; i--)
{
printf("存储地址:var[%d] = %p\n", i-1, ptr );
printf("存储值:var[%d] = %d\n", i-1, *ptr );
/* 指向下一个位置 */
ptr--;
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
存储地址:var[2] = 518a0ae4 存储值:var[2] = 200 存储地址:var[1] = 518a0ae0 存储值:var[1] = 100 存储地址:var[0] = 518a0adc 存储值:var[0] = 10
指针可以用关系运算符进行比较,如 ==、< 和 >。如果 p1 和 p2 指向两个相关的变量,比如同一个数组中的不同元素,则可对 p1 和 p2 进行大小比较。
下面的程序修改了上面的实例,只要变量指针所指向的地址小于或等于数组的最后一个元素的地址 &var[MAX - 1],则把变量指针进行递增:
#include
const int MAX = 3;
int main ()
{
int var[] = {10, 100, 200};
int i, *ptr;
/* 指针中第一个元素的地址 */
ptr = var;
i = 0;
while ( ptr <= &var[MAX - 1] )
{
printf("存储地址:var[%d] = %p\n", i, ptr );
printf("存储值:var[%d] = %d\n", i, *ptr );
/* 指向上一个位置 */
ptr++;
i++;
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
存储地址:var[0] = 0x7ffeee2368cc 存储值:var[0] = 10 存储地址:var[1] = 0x7ffeee2368d0 存储值:var[1] = 100 存储地址:var[2] = 0x7ffeee2368d4 存储值:var[2] = 200
C 指针数组是一个数组,其中的每个元素都是指向某种数据类型的指针。
指针数组存储了一组指针,每个指针可以指向不同的数据对象。
指针数组通常用于处理多个数据对象,例如字符串数组或其他复杂数据结构的数组。
让我们来看一个实例,它用到了一个由 3 个整数组成的数组:
#include
const int MAX = 3;
int main ()
{
int var[] = {10, 100, 200};
int i;
for (i = 0; i < MAX; i++)
{
printf("Value of var[%d] = %d\n", i, var[i] );
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of var[0] = 10 Value of var[1] = 100 Value of var[2] = 200
可能有一种情况,我们想要让数组存储指向 int 或 char 或其他数据类型的指针。
下面是一个指向整数的指针数组的声明:
int *ptr[MAX];
在这里,把 ptr 声明为一个数组,由 MAX 个整数指针组成。因此,ptr 中的每个元素,都是一个指向 int 值的指针。下面的实例用到了三个整数,它们将存储在一个指针数组中,如下所示:
#include
const int MAX = 3;
int main ()
{
int var[] = {10, 100, 200};
int i, *ptr[MAX];
for ( i = 0; i < MAX; i++)
{
ptr[i] = &var[i]; /* 赋值为整数的地址 */
}
for ( i = 0; i < MAX; i++)
{
printf("Value of var[%d] = %d\n", i, *ptr[i] );
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of var[0] = 10 Value of var[1] = 100 Value of var[2] = 200
也可以用一个指向字符的指针数组来存储一个字符串列表,如下:
#include
const int MAX = 4;
int main ()
{
const char *names[] = {
"Zara Ali",
"Hina Ali",
"Nuha Ali",
"Sara Ali",
};
int i = 0;
for ( i = 0; i < MAX; i++)
{
printf("Value of names[%d] = %s\n", i, names[i] );
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of names[0] = Zara Ali Value of names[1] = Hina Ali Value of names[2] = Nuha Ali Value of names[3] = Sara Ali
再看一个简单实例,我们首先声明了一个包含三个整数指针的指针数组 ptrArray,然后,我们将这些指针分别指向不同的整数变量 num1、num2 和 num3,最后,我们使用指针数组访问这些整数变量的值。
#include
int main() {
int num1 = 10, num2 = 20, num3 = 30;
// 声明一个整数指针数组,包含三个指针
int *ptrArray[3];
// 将指针指向不同的整数变量
ptrArray[0] = &num1;
ptrArray[1] = &num2;
ptrArray[2] = &num3;
// 使用指针数组访问这些整数变量的值
printf("Value at index 0: %d\n", *ptrArray[0]);
printf("Value at index 1: %d\n", *ptrArray[1]);
printf("Value at index 2: %d\n", *ptrArray[2]);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Value at index 0: 10 Value at index 1: 20 Value at index 2: 30
指针数组在C中非常有用,特别是在处理具有不定数量元素的数据结构时,如动态分配的字符串数组或动态创建的结构体数组。
指向指针的指针是一种多级间接寻址的形式,或者说是一个指针链。通常,一个指针包含一个变量的地址。当我们定义一个指向指针的指针时,第一个指针包含了第二个指针的地址,第二个指针指向包含实际值的位置。
一个指向指针的指针变量必须如下声明,即在变量名前放置两个星号。例如,下面声明了一个指向 int 类型指针的指针:
int **var;
当一个目标值被一个指针间接指向到另一个指针时,访问这个值需要使用两个星号运算符,如下面实例所示:
#include
int main ()
{
int V;
int *Pt1;
int **Pt2;
V = 100;
/* 获取 V 的地址 */
Pt1 = &V;
/* 使用运算符 & 获取 Pt1 的地址 */
Pt2 = &Pt1;
/* 使用 pptr 获取值 */
printf("var = %d\n", V );
printf("Pt1 = %p\n", Pt1 );
printf("*Pt1 = %d\n", *Pt1 );
printf("Pt2 = %p\n", Pt2 );
printf("**Pt2 = %d\n", **Pt2);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
var = 100 Pt1 = 0x7ffee2d5e8d8 *Pt1 = 100 Pt2 = 0x7ffee2d5e8d0 **Pt2 = 100
指针: 首先,我们要理解什么是指针。指针是一个变量,它存储了另一个变量的地址。通过指针,你可以访问或修改存储在该地址上的变量的值。
指向指针的指针: 现在,假设你有一个指针,这个指针存储了另一个指针的地址。这个指针指向的是指针,所以它被称为指向指针的指针,也叫作二级指针。这个概念是为了允许你间接引用指针,即通过多次解引用来获取最终的值。
C 语言允许您传递指针给函数,只需要简单地声明函数参数为指针类型即可。
下面的实例中,我们传递一个无符号的 long 型指针给函数,并在函数内改变这个值:
#include
#include
void getSeconds(unsigned long *par);
int main ()
{
unsigned long sec;
getSeconds( &sec );
/* 输出实际值 */
printf("Number of seconds: %ld\n", sec );
return 0;
}
void getSeconds(unsigned long *par)
{
/* 获取当前的秒数 */
*par = time( NULL );
return;
}
当上面的代码被编译和执行时,它会产生下列结果:
Number of seconds :1294450468
能接受指针作为参数的函数,也能接受数组作为参数,如下所示:
#include
/* 函数声明 */
double getAverage(int *arr, int size);
int main ()
{
/* 带有 5 个元素的整型数组 */
int balance[5] = {1000, 2, 3, 17, 50};
double avg;
/* 传递一个指向数组的指针作为参数 */
avg = getAverage( balance, 5 ) ;
/* 输出返回值 */
printf("Average value is: %f\n", avg );
return 0;
}
double getAverage(int *arr, int size)
{
int i, sum = 0;
double avg;
for (i = 0; i < size; ++i)
{
sum += arr[i];
}
avg = (double)sum / size;
return avg;
}
当上面的代码被编译和执行时,它会产生下列结果:
Average value is: 214.40000
C 允许您从函数返回指针。为了做到这点,您必须声明一个返回指针的函数,如下所示:
int * myFunction()
{
.
.
.
}
另外,C 语言不支持在调用函数时返回局部变量的地址,除非定义局部变量为 static 变量。
现在,让我们来看下面的函数,它会生成 10 个随机数,并使用表示指针的数组名(即第一个数组元素的地址)来返回它们,具体如下:
#include
#include
#include
/* 要生成和返回随机数的函数 */
int * getRandom( )
{
static int r[10];
int i;
/* 设置种子 */
srand( (unsigned)time( NULL ) );
for ( i = 0; i < 10; ++i)
{
r[i] = rand();
printf("%d\n", r[i] );
}
return r;
}
/* 要调用上面定义函数的主函数 */
int main ()
{
/* 一个指向整数的指针 */
int *p;
int i;
p = getRandom();
for ( i = 0; i < 10; i++ )
{
printf("*(p + [%d]) : %d\n", i, *(p + i) );
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
1523198053
1187214107
1108300978
430494959
1421301276
930971084
123250484
106932140
1604461820
149169022
*(p + [0]) : 1523198053
*(p + [1]) : 1187214107
*(p + [2]) : 1108300978
*(p + [3]) : 430494959
*(p + [4]) : 1421301276
*(p + [5]) : 930971084
*(p + [6]) : 123250484
*(p + [7]) : 106932140
*(p + [8]) : 1604461820
*(p + [9]) : 149169022
函数指针是指向函数的指针变量。
通常我们说的指针变量是指向一个整型、字符型或数组等变量,而函数指针是指向函数。
函数指针可以像一般函数一样,用于调用函数、传递参数。
函数指针变量的声明:
typedef int (*fun_ptr)(int,int); // 声明一个指向同样参数、返回值的函数指针类型
以下实例声明了函数指针变量 p,指向函数 max:
#include
int max(int x, int y)
{
return x > y ? x : y;
}
int main(void)
{
/* p 是函数指针 */
int (* p)(int, int) = & max; // &可以省略
int a, b, c, d;
printf("请输入三个数字:");
scanf("%d %d %d", & a, & b, & c);
/* 与直接调用函数等价,d = max(max(a, b), c) */
d = p(p(a, b), c);
printf("最大的数字是: %d\n", d);
return 0;
}
编译执行,输出结果如下:
请输入三个数字:1 2 3 最大的数字是: 3
函数指针作为某个函数的参数
函数指针变量可以作为某个函数的参数来使用的,回调函数就是一个通过函数指针调用的函数。
简单讲:回调函数是由别人的函数执行时调用你实现的函数。
以下是来自知乎作者常溪玲的解说:
你到一个商店买东西,刚好你要的东西没有货,于是你在店员那里留下了你的电话,过了几天店里有货了,店员就打了你的电话,然后你接到电话后就到店里去取了货。在这个例子里,你的电话号码就叫回调函数,你把电话留给店员就叫登记回调函数,店里后来有货了叫做触发了回调关联的事件,店员给你打电话叫做调用回调函数,你到店里去取货叫做响应回调事件。
实例
实例中 populate_array() 函数定义了三个参数,其中第三个参数是函数的指针,通过该函数来设置数组的值。
实例中我们定义了回调函数 getNextRandomValue(),它返回一个随机值,它作为一个函数指针传递给 populate_array() 函数。
populate_array() 将调用 10 次回调函数,并将回调函数的返回值赋值给数组。
#include
#include
void populate_array(int *array, size_t arraySize, int (*getNextValue)(void))
{
for (size_t i=0; i
编译执行,输出结果如下:
16807 282475249 1622650073 984943658 1144108930 470211272 101027544 1457850878 1458777923 2007237709
在 C 语言中,字符串实际上是使用空字符 \0 结尾的一维字符数组。因此,\0 是用于标记字符串的结束。
空字符(Null character)又称结束符,缩写 NUL,是一个数值为 0 的控制字符,\0 是转义字符,意思是告诉编译器,这不是字符 0,而是空字符。
下面的声明和初始化创建了一个 RUNOOB 字符串。由于在数组的末尾存储了空字符 \0,所以字符数组的大小比单词 RUNOOB 的字符数多一个。
char site[7] = {'R', 'U', 'N', 'O', 'O', 'B', '\0'};
依据数组初始化规则,您可以把上面的语句写成以下语句:
char site[] = "RUNOOB";
以下是 C/C++ 中定义的字符串的内存表示:
不需要把 null 字符放在字符串常量的末尾。C 编译器会在初始化数组时,自动把 \0 放在字符串的末尾。让我们尝试输出上面的字符串:
#include
int main ()
{
char site[7] = {'R', 'U', 'N', 'O', 'O', 'B', '\0'};
printf("菜鸟教程: %s\n", site );
return 0;
}
序号 | 函数 & 目的 |
---|---|
1 | strcpy(s1, s2); 复制字符串 s2 到字符串 s1。 |
2 | strcat(s1, s2); 连接字符串 s2 到字符串 s1 的末尾。 |
3 | strlen(s1); 返回字符串 s1 的长度。 |
4 | strcmp(s1, s2); 如果 s1 和 s2 是相同的,则返回 0;如果 s1 |
5 | strchr(s1, ch); 返回一个指针,指向字符串 s1 中字符 ch 的第一次出现的位置。 |
6 | strstr(s1, s2); 返回一个指针,指向字符串 s1 中字符串 s2 的第一次出现的位置。 |
#include
#include
int main ()
{
char str1[14] = "runoob";
char str2[14] = "google";
char str3[14];
int len ;
/* 复制 str1 到 str3 */
strcpy(str3, str1);
printf("strcpy( str3, str1) : %s\n", str3 );
/* 连接 str1 和 str2 */
strcat( str1, str2);
printf("strcat( str1, str2): %s\n", str1 );
/* 连接后,str1 的总长度 */
len = strlen(str1);
printf("strlen(str1) : %d\n", len );
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
strcpy( str3, str1) : runoob strcat( str1, str2): runoobgoogle strlen(str1) : 12
C 数组允许定义可存储相同类型数据项的变量,结构是 C 编程中另一种用户自定义的可用的数据类型,它允许您存储不同类型的数据项。
结构体中的数据成员可以是基本数据类型(如 int、float、char 等),也可以是其他结构体类型、指针类型等。
结构用于表示一条记录,假设您想要跟踪图书馆中书本的动态,您可能需要跟踪每本书的下列属性:
结构体定义由关键字 struct 和结构体名组成,结构体名可以根据需要自行定义。
struct 语句定义了一个包含多个成员的新的数据类型,struct 语句的格式如下:
struct tag {
member-list
member-list
member-list
...
} variable-list ;
tag 是结构体标签。
member-list 是标准的变量定义,比如 int i; 或者 float f;,或者其他有效的变量定义。
variable-list 结构变量,定义在结构的末尾,最后一个分号之前,您可以指定一个或多个结构变量。下面是声明 Book 结构的方式:
struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
} book;
在一般情况下,tag、member-list、variable-list 这 3 部分至少要出现 2 个。以下为实例:
//此声明声明了拥有3个成员的结构体,分别为整型的a,字符型的b和双精度的c
//同时又声明了结构体变量s1
//这个结构体并没有标明其标签
struct
{
int a;
char b;
double c;
} s1;
//此声明声明了拥有3个成员的结构体,分别为整型的a,字符型的b和双精度的c
//结构体的标签被命名为SIMPLE,没有声明变量
struct SIMPLE
{
int a;
char b;
double c;
};
//用SIMPLE标签的结构体,另外声明了变量t1、t2、t3
struct SIMPLE t1, t2[20], *t3;
//也可以用typedef创建新类型
typedef struct
{
int a;
char b;
double c;
} Simple2;
//现在可以用Simple2作为类型声明新的结构体变量
Simple2 u1, u2[20], *u3;
在上面的声明中,第一个和第二声明被编译器当作两个完全不同的类型,即使他们的成员列表是一样的,如果令 t3=&s1,则是非法的。
结构体的成员可以包含其他结构体,也可以包含指向自己结构体类型的指针,而通常这种指针的应用是为了实现一些更高级的数据结构如链表和树等。
//此结构体的声明包含了其他的结构体
struct COMPLEX
{
char string[100];
struct SIMPLE a;
};
//此结构体的声明包含了指向自己类型的指针
struct NODE
{
char string[100];
struct NODE *next_node;
};
如果两个结构体互相包含,则需要对其中一个结构体进行不完整声明,如下所示:
struct B; //对结构体B进行不完整声明
//结构体A中包含指向结构体B的指针
struct A
{
struct B *partner;
//other members;
};
//结构体B中包含指向结构体A的指针,在A声明完后,B也随之进行声明
struct B
{
struct A *partner;
//other members;
};
和其它类型变量一样,对结构体变量可以在定义时指定初始值。
#include
struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
} book = {"C 语言", "RUNOOB", "编程语言", 123456};
int main()
{
printf("title : %s\nauthor: %s\nsubject: %s\nbook_id: %d\n", book.title, book.author, book.subject, book.book_id);
}
执行输出结果为:
title : C 语言 author: RUNOOB subject: 编程语言 book_id: 123456
为了访问结构的成员,我们使用成员访问运算符(.)。成员访问运算符是结构变量名称和我们要访问的结构成员之间的一个句号。您可以使用 struct 关键字来定义结构类型的变量。下面的实例演示了结构的用法:
#include
#include
struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
};
int main( )
{
struct Books Book1; /* 声明 Book1,类型为 Books */
struct Books Book2; /* 声明 Book2,类型为 Books */
/* Book1 详述 */
strcpy( Book1.title, "C Programming");
strcpy( Book1.author, "Nuha Ali");
strcpy( Book1.subject, "C Programming Tutorial");
Book1.book_id = 6495407;
/* Book2 详述 */
strcpy( Book2.title, "Telecom Billing");
strcpy( Book2.author, "Zara Ali");
strcpy( Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;
/* 输出 Book1 信息 */
printf( "Book 1 title : %s\n", Book1.title);
printf( "Book 1 author : %s\n", Book1.author);
printf( "Book 1 subject : %s\n", Book1.subject);
printf( "Book 1 book_id : %d\n", Book1.book_id);
/* 输出 Book2 信息 */
printf( "Book 2 title : %s\n", Book2.title);
printf( "Book 2 author : %s\n", Book2.author);
printf( "Book 2 subject : %s\n", Book2.subject);
printf( "Book 2 book_id : %d\n", Book2.book_id);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Book 1 title : C Programming Book 1 author : Nuha Ali Book 1 subject : C Programming Tutorial Book 1 book_id : 6495407 Book 2 title : Telecom Billing Book 2 author : Zara Ali Book 2 subject : Telecom Billing Tutorial Book 2 book_id : 6495700
您可以把结构作为函数参数,传参方式与其他类型的变量或指针类似。您可以使用上面实例中的方式来访问结构变量:
#include
#include
struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
};
/* 函数声明 */
void printBook( struct Books book );
int main( )
{
struct Books Book1; /* 声明 Book1,类型为 Books */
struct Books Book2; /* 声明 Book2,类型为 Books */
/* Book1 详述 */
strcpy( Book1.title, "C Programming");
strcpy( Book1.author, "Nuha Ali");
strcpy( Book1.subject, "C Programming Tutorial");
Book1.book_id = 6495407;
/* Book2 详述 */
strcpy( Book2.title, "Telecom Billing");
strcpy( Book2.author, "Zara Ali");
strcpy( Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;
/* 输出 Book1 信息 */
printBook( Book1 );
/* 输出 Book2 信息 */
printBook( Book2 );
return 0;
}
void printBook( struct Books book )
{
printf( "Book title : %s\n", book.title);
printf( "Book author : %s\n", book.author);
printf( "Book subject : %s\n", book.subject);
printf( "Book book_id : %d\n", book.book_id);
}
当上面的代码被编译和执行时,它会产生下列结果:
Book title : C Programming Book author : Nuha Ali Book subject : C Programming Tutorial Book book_id : 6495407 Book title : Telecom Billing Book author : Zara Ali Book subject : Telecom Billing Tutorial Book book_id : 6495700
您可以定义指向结构的指针,方式与定义指向其他类型变量的指针相似,如下所示:
struct Books *struct_pointer;
可以在上述定义的指针变量中存储结构变量的地址。为了查找结构变量的地址,请把 & 运算符放在结构名称的前面,如下所示:
struct_pointer = &Book1;
为了使用指向该结构的指针访问结构的成员,您必须使用 -> 运算符,如下所示
struct_pointer->title;
使用结构指针来重写上面的实例,这将有助于您理解结构指针的概念:
#include
#include
struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
};
/* 函数声明 */
void printBook( struct Books *book );
int main( )
{
struct Books Book1; /* 声明 Book1,类型为 Books */
struct Books Book2; /* 声明 Book2,类型为 Books */
/* Book1 详述 */
strcpy( Book1.title, "C Programming");
strcpy( Book1.author, "Nuha Ali");
strcpy( Book1.subject, "C Programming Tutorial");
Book1.book_id = 6495407;
/* Book2 详述 */
strcpy( Book2.title, "Telecom Billing");
strcpy( Book2.author, "Zara Ali");
strcpy( Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;
/* 通过传 Book1 的地址来输出 Book1 信息 */
printBook( &Book1 );
/* 通过传 Book2 的地址来输出 Book2 信息 */
printBook( &Book2 );
return 0;
}
void printBook( struct Books *book )
{
printf( "Book title : %s\n", book->title);
printf( "Book author : %s\n", book->author);
printf( "Book subject : %s\n", book->subject);
printf( "Book book_id : %d\n", book->book_id);
}
当上面的代码被编译和执行时,它会产生下列结果:
Book title : C Programming Book author : Nuha Ali Book subject : C Programming Tutorial Book book_id : 6495407 Book title : Telecom Billing Book author : Zara Ali Book subject : Telecom Billing Tutorial Book book_id : 6495700
C 语言中,我们可以使用 sizeof 运算符来计算结构体的大小,sizeof 返回的是给定类型或变量的字节大小。
对于结构体,sizeof 将返回结构体的总字节数,包括所有成员变量的大小以及可能的填充字节。
以下实例演示了如何计算结构体的大小:
#include
struct Person {
char name[20];
int age;
float height;
};
int main() {
struct Person person;
printf("结构体 Person 大小为: %zu 字节\n", sizeof(person));
return 0;
}
以上实例中,我们定义了一个名为 Person 的结构体,它包含了一个字符数组 name、一个整数 age 和一个浮点数 height。
在 main 函数中,我们声明了一个 Person 类型的变量 person,然后使用 sizeof 运算符来获取 person 结构体的大小。
最后,我们使用 printf 函数打印出结构体的大小,输出结果如下:
结构体 Person 大小为: 28 字节
注意,结构体的大小可能会受到编译器的优化和对齐规则的影响,编译器可能会在结构体中插入一些额外的填充字节以对齐结构体的成员变量,以提高内存访问效率。因此,结构体的实际大小可能会大于成员变量大小的总和,如果你需要确切地了解结构体的内存布局和对齐方式,可以使用 offsetof 宏和 __attribute__((packed)) 属性等进一步控制和查询结构体的大小和对齐方式。
共用体是一种特殊的数据类型,允许您在相同的内存位置存储不同的数据类型。您可以定义一个带有多成员的共用体,但是任何时候只能有一个成员带有值。共用体提供了一种使用相同的内存位置的有效方式。
为了定义共用体,您必须使用 union 语句,方式与定义结构类似。union 语句定义了一个新的数据类型,带有多个成员。union 语句的格式如下:
union [union tag]
{
member definition;
member definition;
...
member definition;
} [one or more union variables];
union tag 是可选的,每个 member definition 是标准的变量定义,比如 int i; 或者 float f; 或者其他有效的变量定义。在共用体定义的末尾,最后一个分号之前,您可以指定一个或多个共用体变量,这是可选的。下面定义一个名为 Data 的共用体类型,有三个成员 i、f 和 str:
union Data
{
int i;
float f;
char str[20];
} data;
现在,Data 类型的变量可以存储一个整数、一个浮点数,或者一个字符串。这意味着一个变量(相同的内存位置)可以存储多个多种类型的数据。您可以根据需要在一个共用体内使用任何内置的或者用户自定义的数据类型。
共用体占用的内存应足够存储共用体中最大的成员。例如,在上面的实例中,Data 将占用 20 个字节的内存空间,因为在各个成员中,字符串所占用的空间是最大的。下面的实例将显示上面的共用体占用的总内存大小:
#include
#include
union Data
{
int i;
float f;
char str[20];
};
int main( )
{
union Data data;
printf( "Memory size occupied by data : %d\n", sizeof(data));
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Memory size occupied by data : 20
为了访问共用体的成员,我们使用成员访问运算符(.)。成员访问运算符是共用体变量名称和我们要访问的共用体成员之间的一个句号。您可以使用 union 关键字来定义共用体类型的变量。下面的实例演示了共用体的用法:
#include
#include
union Data
{
int i;
float f;
char str[20];
};
int main( )
{
union Data data;
data.i = 10;
data.f = 220.5;
strcpy( data.str, "C Programming");
printf( "data.i : %d\n", data.i);
printf( "data.f : %f\n", data.f);
printf( "data.str : %s\n", data.str);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
data.i : 1917853763 data.f : 4122360580327794860452759994368.000000 data.str : C Programming
在这里,我们可以看到共用体的 i 和 f 成员的值有损坏,因为最后赋给变量的值占用了内存位置,这也是 str 成员能够完好输出的原因。现在让我们再来看一个相同的实例,这次我们在同一时间只使用一个变量,这也演示了使用共用体的主要目的:
#include
#include
union Data
{
int i;
float f;
char str[20];
};
int main( )
{
union Data data;
data.i = 10;
printf( "data.i : %d\n", data.i);
data.f = 220.5;
printf( "data.f : %f\n", data.f);
strcpy( data.str, "C Programming");
printf( "data.str : %s\n", data.str);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
data.i : 10 data.f : 220.500000 data.str : C Programmin
使用共用体(Union)可以实现在一段内存空间中存储不同类型的数据,但它与面向对象编程(OOP)中的对象和方法不同。共用体允许你在同一段内存中存储不同类型的数据,但你不能像在OOP中那样使用类和对象方法来操作这些数据。
在面向对象编程中,对象是数据和操作它的方法的组合。这些方法被封装在类中,对象的状态(数据)由这些方法来维护和访问。这提供了更高级别的抽象和封装,以便更容易管理和操作数据。
共用体不提供面向对象编程中的封装和抽象,它只是将不同类型的数据存储在相同的内存位置,使得你可以使用不同的成员来访问这些数据。在共用体中,只能同时访问一个成员的数据。
#include
union MyUnion {
int integer;
float floating;
char character;
};
int main() {
union MyUnion data;
data.integer = 42;
printf("Integer: %d\n", data.integer);
data.floating = 3.14;
printf("Floating: %f\n", data.floating);
data.character = 'A';
printf("Character: %c\n", data.character);
return 0;
}
如果你在C中想要模拟一些面向对象编程的特性,例如封装和方法操作,你可以使用结构体和函数指针。尽管C不具备面向对象编程的内建支持,但你可以通过一些技巧来实现类似的概念。以下是一个简单示例:
#include
// 定义一个结构体来模拟类
struct MyObject {
int data;
// 用函数指针来模拟方法
void (*printData)(struct MyObject *);
};
// 方法函数,用于打印数据
void printDataFunc(struct MyObject *obj) {
printf("Data: %d\n", obj->data);
}
int main() {
struct MyObject obj;
obj.data = 42;
obj.printData = printDataFunc;
// 调用方法来操作数据
obj.printData(&obj);
return 0;
}
C 语言的位域(bit-field)是一种特殊的结构体成员,允许我们按位对成员进行定义,指定其占用的位数。
如果程序的结构中包含多个开关的变量,即变量值为 TRUE/FALSE,如下:
struct
{
unsigned int widthValidated;
unsigned int heightValidated;
} status;
这种结构需要 8 字节的内存空间,但在实际上,在每个变量中,我们只存储 0 或 1,在这种情况下,C 语言提供了一种更好的利用内存空间的方式。如果您在结构内使用这样的变量,您可以定义变量的宽度来告诉编译器,您将只使用这些字节。例如,上面的结构可以重写成:
struct
{
unsigned int widthValidated : 1;
unsigned int heightValidated : 1;
} status;
现在,上面的结构中,status 变量将占用 4 个字节的内存空间,但是只有 2 位被用来存储值。如果您用了 32 个变量,每一个变量宽度为 1 位,那么 status 结构将使用 4 个字节,但只要您再多用一个变量,如果使用了 33 个变量,那么它将分配内存的下一段来存储第 33 个变量,这个时候就开始使用 8 个字节。让我们看看下面的实例来理解这个概念:
#include
#include
/* 定义简单的结构 */
struct
{
unsigned int widthValidated;
unsigned int heightValidated;
} status1;
/* 定义位域结构 */
struct
{
unsigned int widthValidated : 1;
unsigned int heightValidated : 1;
} status2;
int main( )
{
printf( "Memory size occupied by status1 : %d\n", sizeof(status1));
printf( "Memory size occupied by status2 : %d\n", sizeof(status2));
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Memory size occupied by status1 : 8 Memory size occupied by status2 : 4
位域的特点和使用方法如下:
int
、unsigned int
、signed int
等整数类型,也可以是枚举类型。.
)来实现的,与普通的结构体成员访问方式相同。有些信息在存储时,并不需要占用一个完整的字节,而只需占几个或一个二进制位。例如在存放一个开关量时,只有 0 和 1 两种状态,用 1 位二进位即可。为了节省存储空间,并使处理简便,C 语言又提供了一种数据结构,称为"位域"或"位段"。
所谓"位域"是把一个字节中的二进位划分为几个不同的区域,并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。这样就可以把几个不同的对象用一个字节的二进制位域来表示。
典型的实例:
位域定义与结构定义相仿,其形式为:
struct 位域结构名
{
位域列表
};
其中位域列表的形式为:
type [member_name] : width ;
下面是有关位域中变量元素的描述:
元素 | 描述 |
---|---|
type | 只能为 int(整型),unsigned int(无符号整型),signed int(有符号整型) 三种类型,决定了如何解释位域的值。 |
member_name | 位域的名称。 |
width | 位域中位的数量。宽度必须小于或等于指定类型的位宽度。 |
带有预定义宽度的变量被称为位域。位域可以存储多于 1 位的数,例如,需要一个变量来存储从 0 到 7 的值,您可以定义一个宽度为 3 位的位域,如下:
struct
{
unsigned int age : 3;
} Age;
上面的结构定义指示 C 编译器,age 变量将只使用 3 位来存储这个值,如果您试图使用超过 3 位,则无法完成。
struct bs{
int a:8;
int b:2;
int c:6;
}data;
以上代码定义了一个名为 struct bs 的结构体,data 为 bs 的结构体变量,共占四个字节:
对于位域来说,它们的宽度不能超过其数据类型的大小,在这种情况下,int 类型的大小通常是 4 个字节(32位)。
相邻位域字段的类型相同,且其位宽之和小于类型的 sizeo f大小,则后面的字段将紧邻前一个字段存储,直到不能容纳为止。
让我们再来看一个实例:
struct packed_struct {
unsigned int f1:1;
unsigned int f2:1;
unsigned int f3:1;
unsigned int f4:1;
unsigned int type:4;
unsigned int my_int:9;
} pack;
以上代码定义了一个名为 packed_struct 的结构体,其中包含了六个成员变量,pack 为 packed_struct 的结构体变量。
在这里,packed_struct 包含了 6 个成员:四个 1 位的标识符 f1..f4、一个 4 位的 type 和一个 9 位的 my_int。
让我们来看下面的实例:
#include
struct packed_struct {
unsigned int f1 : 1; // 1位的位域
unsigned int f2 : 1; // 1位的位域
unsigned int f3 : 1; // 1位的位域
unsigned int f4 : 1; // 1位的位域
unsigned int type : 4; // 4位的位域
unsigned int my_int : 9; // 9位的位域
};
int main() {
struct packed_struct pack;
pack.f1 = 1;
pack.f2 = 0;
pack.f3 = 1;
pack.f4 = 0;
pack.type = 7;
pack.my_int = 255;
printf("f1: %u\n", pack.f1);
printf("f2: %u\n", pack.f2);
printf("f3: %u\n", pack.f3);
printf("f4: %u\n", pack.f4);
printf("type: %u\n", pack.type);
printf("my_int: %u\n", pack.my_int);
return 0;
}
以上实例定义了一个名为 packed_struct 的结构体,其中包含了多个位域成员。
在 main 函数中,创建了一个 packed_struct 类型的结构体变量 pack,并分别给每个位域成员赋值。
然后使用 printf 语句打印出每个位域成员的值。
输出结果为:
f1: 1
f2: 0
f3: 1
f4: 0
type: 7
my_int: 255
#include
#include
struct
{
unsigned int age : 3;
} Age;
int main( )
{
Age.age = 4;
printf( "Sizeof( Age ) : %d\n", sizeof(Age) );
printf( "Age.age : %d\n", Age.age );
Age.age = 7;
printf( "Age.age : %d\n", Age.age );
Age.age = 8; // 二进制表示为 1000 有四位,超出
printf( "Age.age : %d\n", Age.age );
return 0;
}
当上面的代码被编译时,它会带有警告,当上面的代码被执行时,它会产生下列结果:
Sizeof( Age ) : 4 Age.age : 4 Age.age : 7 Age.age : 0
计算字节数:
#include
struct example1 {
int a : 4;
int b : 5;
int c : 7;
};
int main() {
struct example1 ex1;
printf("Size of example1: %lu bytes\n", sizeof(ex1));
return 0;
}
以上实例中,example1 结构体包含三个位域成员 a,b 和 c,它们分别占用 4 位、5 位和 7 位。
通过 sizeof 运算符计算出 example1 结构体的字节数,并输出结果:
Size of example1: 4 bytes
对于位域的定义尚有以下几点说明:
一个位域存储在同一个字节中,如一个字节所剩空间不够存放另一位域时,则会从下一单元起存放该位域。也可以有意使某位域从下一单元开始。例如:
struct bs{
unsigned a:4;
unsigned :4; /* 空域 */
unsigned b:4; /* 从下一单元开始存放 */
unsigned c:4
}
在这个位域定义中,a 占第一字节的 4 位,后 4 位填 0 表示不使用,b 从第二字节开始,占用 4 位,c 占用 4 位。
位域的宽度不能超过它所依附的数据类型的长度,成员变量都是有类型的,这个类型限制了成员变量的最大长度,: 后面的数字不能超过这个长度。
位域可以是无名位域,这时它只用来作填充或调整位置。无名的位域是不能使用的。例如:
struct k{
int a:1;
int :2; /* 该 2 位不能使用 */
int b:3;
int c:2;
};
从以上分析可以看出,位域在本质上就是一种结构类型,不过其成员是按二进位分配的。
位域的使用和结构成员的使用相同,其一般形式为:
位域变量名.位域名
位域变量名->位域名
位域允许用各种格式输出。
请看下面的实例:
#include
int main(){
struct bs{
unsigned a:1;
unsigned b:3;
unsigned c:4;
} bit,*pbit;
bit.a=1; /* 给位域赋值(应注意赋值不能超过该位域的允许范围) */
bit.b=7; /* 给位域赋值(应注意赋值不能超过该位域的允许范围) */
bit.c=15; /* 给位域赋值(应注意赋值不能超过该位域的允许范围) */
printf("%d,%d,%d\n",bit.a,bit.b,bit.c); /* 以整型量格式输出三个域的内容 */
pbit=&bit; /* 把位域变量 bit 的地址送给指针变量 pbit */
pbit->a=0; /* 用指针方式给位域 a 重新赋值,赋为 0 */
pbit->b&=3; /* 使用了复合的位运算符 "&=",相当于:pbit->b=pbit->b&3,位域 b 中原有值为 7,与 3 作按位与运算的结果为 3(111&011=011,十进制值为 3) */
pbit->c|=1; /* 使用了复合位运算符"|=",相当于:pbit->c=pbit->c|1,其结果为 15 */
printf("%d,%d,%d\n",pbit->a,pbit->b,pbit->c); /* 用指针方式输出了这三个域的值 */
}
上例程序中定义了位域结构 bs,三个位域为 a、b、c。说明了 bs 类型的变量 bit 和指向 bs 类型的指针变量 pbit。这表示位域也是可以使用指针的。
C 语言提供了 typedef 关键字,您可以使用它来为类型取一个新的名字。下面的实例为单字节数字定义了一个术语 BYTE:
typedef unsigned char BYTE;
在这个类型定义之后,标识符 BYTE 可作为类型 unsigned char 的缩写,例如:
BYTE b1, b2;
按照惯例,定义时会大写字母,以便提醒用户类型名称是一个象征性的缩写,但您也可以使用小写字母,如下:
typedef unsigned char byte;
您也可以使用 typedef 来为用户自定义的数据类型取一个新的名字。例如,您可以对结构体使用 typedef 来定义一个新的数据类型名字,然后使用这个新的数据类型来直接定义结构变量,如下:
#include
#include
typedef struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
} Book;
int main( )
{
Book book;
strcpy( book.title, "C 教程");
strcpy( book.author, "Runoob");
strcpy( book.subject, "编程语言");
book.book_id = 12345;
printf( "书标题 : %s\n", book.title);
printf( "书作者 : %s\n", book.author);
printf( "书类目 : %s\n", book.subject);
printf( "书 ID : %d\n", book.book_id);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
书标题 : C 教程
书作者 : Runoob
书类目 : 编程语言
书 ID : 12345
#define 是 C 指令,用于为各种数据类型定义别名,与 typedef 类似,但是它们有以下几点不同:
下面是 #define 的最简单的用法:
#include
#define TRUE 1
#define FALSE 0
int main( )
{
printf( "TRUE 的值: %d\n", TRUE);
printf( "FALSE 的值: %d\n", FALSE);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
TRUE 的值: 1 FALSE 的值: 0
当我们提到输入时,这意味着要向程序填充一些数据。输入可以是以文件的形式或从命令行中进行。C 语言提供了一系列内置的函数来读取给定的输入,并根据需要填充到程序中。
当我们提到输出时,这意味着要在屏幕上、打印机上或任意文件中显示一些数据。C 语言提供了一系列内置的函数来输出数据到计算机屏幕上和保存数据到文本文件或二进制文件中。
C 语言把所有的设备都当作文件。所以设备(比如显示器)被处理的方式与文件相同。以下三个文件会在程序执行时自动打开,以便访问键盘和屏幕。
标准文件 | 文件指针 | 设备 |
---|---|---|
标准输入 | stdin | 键盘 |
标准输出 | stdout | 屏幕 |
标准错误 | stderr | 您的屏幕 |
文件指针是访问文件的方式,本节将讲解如何从键盘上读取值以及如何把结果输出到屏幕上。
C 语言中的 I/O (输入/输出) 通常使用 printf() 和 scanf() 两个函数。
scanf() 函数用于从标准输入(键盘)读取并格式化, printf() 函数发送格式化输出到标准输出(屏幕)。
#include // 执行 printf() 函数需要该库
int main()
{
printf("菜鸟教程"); //显示引号中的内容
return 0;
}
编译以上程序,输出结果为:
菜鸟教程
实例解析:
在C语言中,return
语句用于从函数中返回一个值或者控制程序的流程。return
的作用和用法包括以下几个方面:
返回值: return
语句用于将函数的计算结果返回给调用者。这个返回值可以是任何合法的C数据类型,包括整数、浮点数、指针等。如果函数没有返回值,可以使用 return;
语句。
函数结束: return
语句还用于结束函数的执行,即使函数没有返回值。当执行 return
语句时,函数将立即退出,并控制权返回给调用者。
多重返回: 在函数中可以使用多个 return
语句,每个 return
语句可以返回不同的值,具体的 return
语句的执行取决于程序流程。
条件返回: return
语句通常与条件语句结合使用,例如 if
语句,以根据不同的条件返回不同的值。这允许函数根据特定情况返回不同的结果。
#include
// 函数返回整数
int add(int a, int b) {
return a + b;
}
// 函数结束,没有返回值
void greet() {
printf("Hello, World!\n");
return; // 可以省略
}
int main() {
int result = add(3, 4); // 调用带返回值的函数
printf("Result: %d\n", result);
greet(); // 调用无返回值的函数
return 0; // 返回整数值0表示程序正常终止
}
#include
int main()
{
int testInteger = 5;
printf("Number = %d", testInteger);
return 0;
}
编译以上程序,输出结果为:
Number = 5
在 printf() 函数的引号中使用 "%d" (整型) 来匹配整型变量 testInteger 并输出到屏幕。
%f 格式化输出浮点型数据
#include
int main()
{
float f;
printf("Enter a number: ");
// %f 匹配浮点型数据
scanf("%f",&f);
printf("Value = %f", f);
return 0;
}
int getchar(void) 函数从屏幕读取下一个可用的字符,并把它返回为一个整数。这个函数在同一个时间内只会读取一个单一的字符。您可以在循环内使用这个方法,以便从屏幕上读取多个字符。
int putchar(int c) 函数把字符输出到屏幕上,并返回相同的字符。这个函数在同一个时间内只会输出一个单一的字符。您可以在循环内使用这个方法,以便在屏幕上输出多个字符。
请看下面的实例:
#include
int main( )
{
int c;
printf( "Enter a value :");
c = getchar( );
printf( "\nYou entered: ");
putchar( c );
printf( "\n");
return 0;
}
当上面的代码被编译和执行时,它会等待您输入一些文本,当您输入一个文本并按下回车键时,程序会继续并只会读取一个单一的字符,显示如下:
$./a.out
Enter a value :runoob
You entered: r
char *gets(char *s) 函数从 stdin 读取一行到 s 所指向的缓冲区,直到一个终止符或 EOF。
int puts(const char *s) 函数把字符串 s 和一个尾随的换行符写入到 stdout。
#include
int main( )
{
char str[100];
printf( "Enter a value :");
gets( str );
printf( "\nYou entered: ");
puts( str );
return 0;
}
当上面的代码被编译和执行时,它会等待您输入一些文本,当您输入一个文本并按下回车键时,程序会继续并读取一整行直到该行结束,显示如下:
$./a.out
Enter a value :runoob
You entered: runoob
int scanf(const char *format, ...) 函数从标准输入流 stdin 读取输入,并根据提供的 format 来浏览输入。
int printf(const char *format, ...) 函数把输出写入到标准输出流 stdout ,并根据提供的格式产生输出。
format 可以是一个简单的常量字符串,但是您可以分别指定 %s、%d、%c、%f 等来输出或读取字符串、整数、字符或浮点数。还有许多其他可用的格式选项,可以根据需要使用。如需了解完整的细节,可以查看这些函数的参考手册。现在让我们通过下面这个简单的实例来加深理解:
#include
int main( ) {
char str[100];
int i;
printf( "Enter a value :");
scanf("%s %d", str, &i);
printf( "\nYou entered: %s %d ", str, i);
printf("\n");
return 0;
}
当上面的代码被编译和执行时,它会等待您输入一些文本,当您输入一个文本并按下回车键时,程序会继续并读取输入,显示如下:
$./a.out Enter a value :runoob 123 You entered: runoob 123
在这里,应当指出的是,scanf() 期待输入的格式与您给出的 %s 和 %d 相同,这意味着您必须提供有效的输入,比如 "string integer",如果您提供的是 "string string" 或 "integer integer",它会被认为是错误的输入。另外,在读取字符串时,只要遇到一个空格,scanf() 就会停止读取,所以 "this is test" 对 scanf() 来说是三个字符串。
scanf()
函数:
scanf()
函数用于从标准输入设备(通常是键盘)读取输入并将输入的值存储到指定的变量中。它的基本用法如下:int scanf(const char *format, ...);
format
是一个格式字符串,它指定了要读取的数据类型和数据的排列方式。格式字符串中可以包括格式说明符(如%d
表示整数,%f
表示浮点数,%s
表示字符串等)以及空白字符,这些格式说明符对应输入数据的类型。
...
表示可变数量的参数,对应于format
中的格式说明符。你需要提供与格式字符串中格式说明符匹配的变量或指针,以便将输入的值存储到这些变量中。示例:
int age; char name[50]; printf("Enter your age: "); scanf("%d", &age); // 从标准输入中读取整数并存储到变量age中 printf("Enter your name: "); scanf("%s", name); // 从标准输入中读取字符串并存储到字符数组name中
printf()
函数:
printf()
函数用于将数据格式化为字符串,并将这些字符串输出到标准输出设备(通常是终端窗口)。它的基本用法如下:int printf(const char *format, ...);
format
是一个格式字符串,它指定了要输出的文本的排列方式以及要插入的变量的值。格式字符串中包括格式说明符,这些说明符用于指定输出的格式。
...
表示可变数量的参数,对应于format
中的格式说明符。你需要提供要输出的变量、表达式或常数,这些值将按照格式字符串的要求进行格式化。示例:
int age = 30; char name[] = "John"; printf("My name is %s and I am %d years old.\n", name, age); // 输出格式化的字符串
C 语言不仅提供了访问顶层的函数,也提供了底层(OS)调用来处理存储设备上的文件。
您可以使用 fopen( ) 函数来创建一个新的文件或者打开一个已有的文件,这个调用会初始化类型 FILE 的一个对象,类型 FILE 包含了所有用来控制流的必要的信息。下面是这个函数调用的原型:
FILE *fopen( const char *filename, const char *mode );
在这里,filename 是字符串,用来命名文件,访问模式 mode 的值可以是下列值中的一个:
模式 | 描述 |
---|---|
r | 打开一个已有的文本文件,允许读取文件。 |
w | 打开一个文本文件,允许写入文件。如果文件不存在,则会创建一个新文件。在这里,您的程序会从文件的开头写入内容。如果文件存在,则该会被截断为零长度,重新写入。 |
a | 打开一个文本文件,以追加模式写入文件。如果文件不存在,则会创建一个新文件。在这里,您的程序会在已有的文件内容中追加内容。 |
r+ | 打开一个文本文件,允许读写文件。 |
w+ | 打开一个文本文件,允许读写文件。如果文件已存在,则文件会被截断为零长度,如果文件不存在,则会创建一个新文件。 |
a+ | 打开一个文本文件,允许读写文件。如果文件不存在,则会创建一个新文件。读取会从文件的开头开始,写入则只能是追加模式。 |
如果处理的是二进制文件,则需使用下面的访问模式来取代上面的访问模式:
"rb", "wb", "ab", "rb+", "r+b", "wb+", "w+b", "ab+", "a+b"
为了关闭文件,请使用 fclose( ) 函数。函数的原型如下:
int fclose( FILE *fp );
如果成功关闭文件,fclose( ) 函数返回零,如果关闭文件时发生错误,函数返回 EOF。这个函数实际上,会清空缓冲区中的数据,关闭文件,并释放用于该文件的所有内存。EOF 是一个定义在头文件 stdio.h 中的常量。
C 标准库提供了各种函数来按字符或者以固定长度字符串的形式读写文件。
下面是把字符写入到流中的最简单的函数:
int fputc( int c, FILE *fp );
函数 fputc() 把参数 c 的字符值写入到 fp 所指向的输出流中。如果写入成功,它会返回写入的字符,如果发生错误,则会返回 EOF。您可以使用下面的函数来把一个以 null 结尾的字符串写入到流中:
int fputs( const char *s, FILE *fp );
函数 fputs() 把字符串 s 写入到 fp 所指向的输出流中。如果写入成功,它会返回一个非负值,如果发生错误,则会返回 EOF。您也可以使用 int fprintf(FILE *fp,const char *format, ...) 函数把一个字符串写入到文件中。尝试下面的实例:
注意:请确保您有可用的 tmp 目录,如果不存在该目录,则需要在您的计算机上先创建该目录。
/tmp 一般是 Linux 系统上的临时目录,如果你在 Windows 系统上运行,则需要修改为本地环境中已存在的目录,例如: C:\tmp、D:\tmp等。
#include
int main()
{
FILE *fp = NULL;
fp = fopen("/tmp/test.txt", "w+");
fprintf(fp, "This is testing for fprintf...\n");
fputs("This is testing for fputs...\n", fp);
fclose(fp);
}
当上面的代码被编译和执行时,它会在 /tmp 目录中创建一个新的文件 test.txt,并使用两个不同的函数写入两行。接下来让我们来读取这个文件。
下面是从文件读取单个字符的最简单的函数:
int fgetc( FILE * fp );
fgetc() 函数从 fp 所指向的输入文件中读取一个字符。返回值是读取的字符,如果发生错误则返回 EOF。下面的函数允许您从流中读取一个字符串:
char *fgets( char *buf, int n, FILE *fp );
函数 fgets() 从 fp 所指向的输入流中读取 n - 1 个字符。它会把读取的字符串复制到缓冲区 buf,并在最后追加一个 null 字符来终止字符串。
如果这个函数在读取最后一个字符之前就遇到一个换行符 '\n' 或文件的末尾 EOF,则只会返回读取到的字符,包括换行符。您也可以使用 int fscanf(FILE *fp, const char *format, ...) 函数来从文件中读取字符串,但是在遇到第一个空格和换行符时,它会停止读取。
#include
int main()
{
FILE *fp = NULL;
char buff[255];
fp = fopen("/tmp/test.txt", "r");
fscanf(fp, "%s", buff);
printf("1: %s\n", buff );
fgets(buff, 255, (FILE*)fp);
printf("2: %s\n", buff );
fgets(buff, 255, (FILE*)fp);
printf("3: %s\n", buff );
fclose(fp);
}
当上面的代码被编译和执行时,它会读取上一部分创建的文件,产生下列结果:
1: This 2: is testing for fprintf... 3: This is testing for fputs...
首先,fscanf() 方法只读取了 This,因为它在后边遇到了一个空格。其次,调用 fgets() 读取剩余的部分,直到行尾。最后,调用 fgets() 完整地读取第二行。
下面两个函数用于二进制输入和输出:
size_t fread(void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);
这两个函数都是用于存储块的读写 - 通常是数组或结构体。
C 预处理器不是编译器的组成部分,但是它是编译过程中一个单独的步骤。简言之,C 预处理器只不过是一个文本替换工具而已,它们会指示编译器在实际编译之前完成所需的预处理。我们将把 C 预处理器(C Preprocessor)简写为 CPP。
所有的预处理器命令都是以井号(#)开头。它必须是第一个非空字符,为了增强可读性,预处理器指令应从第一列开始。下面列出了所有重要的预处理器指令:
指令 | 描述 |
---|---|
#define | 定义宏 |
#include | 包含一个源代码文件 |
#undef | 取消已定义的宏 |
#ifdef | 如果宏已经定义,则返回真 |
#ifndef | 如果宏没有定义,则返回真 |
#if | 如果给定条件为真,则编译下面代码 |
#else | #if 的替代方案 |
#elif | 如果前面的 #if 给定条件不为真,当前条件为真,则编译下面代码 |
#endif | 结束一个 #if……#else 条件编译块 |
#error | 当遇到标准错误时,输出错误消息 |
#pragma | 使用标准化方法,向编译器发布特殊的命令到编译器中 |
分析下面的实例来理解不同的指令。
#define MAX_ARRAY_LENGTH 20
这个指令告诉 CPP 把所有的 MAX_ARRAY_LENGTH 定义为 20。使用 #define 定义常量来增强可读性。
#include
#include "myheader.h"
这些指令告诉 CPP 从系统库中获取 stdio.h,并添加文本到当前的源文件中。下一行告诉 CPP 从本地目录中获取 myheader.h,并添加内容到当前的源文件中。
#undef FILE_SIZE
#define FILE_SIZE 42
这个指令告诉 CPP 取消已定义的 FILE_SIZE,并定义它为 42。
#ifndef MESSAGE
#define MESSAGE "You wish!"
#endif
这个指令告诉 CPP 只有当 MESSAGE 未定义时,才定义 MESSAGE。
#ifdef DEBUG
/* Your debugging statements here */
#endif
这个指令告诉 CPP 如果定义了 DEBUG,则执行处理语句。在编译时,如果您向 gcc 编译器传递了 -DDEBUG 开关量,这个指令就非常有用。它定义了 DEBUG,您可以在编译期间随时开启或关闭调试。
ANSI C 定义了许多宏。在编程中您可以使用这些宏,但是不能直接修改这些预定义的宏。
宏 | 描述 |
---|---|
__DATE__ | 当前日期,一个以 "MMM DD YYYY" 格式表示的字符常量。 |
__TIME__ | 当前时间,一个以 "HH:MM:SS" 格式表示的字符常量。 |
__FILE__ | 这会包含当前文件名,一个字符串常量。 |
__LINE__ | 这会包含当前行号,一个十进制常量。 |
__STDC__ | 当编译器以 ANSI 标准编译时,则定义为 1。 |
让我们来尝试下面的实例:
#include
main()
{
printf("File :%s\n", __FILE__ );
printf("Date :%s\n", __DATE__ );
printf("Time :%s\n", __TIME__ );
printf("Line :%d\n", __LINE__ );
printf("ANSI :%d\n", __STDC__ );
}
当上面的代码(在文件 test.c 中)被编译和执行时,它会产生下列结果:
File :test.c
Date :Jun 2 2012
Time :03:36:24
Line :8
ANSI :1
C 预处理器提供了下列的运算符来帮助您创建宏:
一个宏通常写在一个单行上。但是如果宏太长,一个单行容纳不下,则使用宏延续运算符(\)。例如:
#define message_for(a, b) \
printf(#a " and " #b ": We love you!\n")
在宏定义中,当需要把一个宏的参数转换为字符串常量时,则使用字符串常量化运算符(#)。在宏中使用的该运算符有一个特定的参数或参数列表。例如:
#include
#define message_for(a, b) \
printf(#a " and " #b ": We love you!\n")
int main(void)
{
message_for(Carole, Debra);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Carole and Debra: We love you!
宏定义内的标记粘贴运算符(##)会合并两个参数。它允许在宏定义中两个独立的标记被合并为一个标记。例如:
#include
#define tokenpaster(n) printf ("token" #n " = %d", token##n)
int main(void)
{
int token34 = 40;
tokenpaster(34);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
token34 = 40
这是怎么发生的,因为这个实例会从编译器产生下列的实际输出:
printf ("token34 = %d", token34);
这个实例演示了 token##n 会连接到 token34 中,在这里,我们使用了字符串常量化运算符(#)和标记粘贴运算符(##)。
预处理器 defined 运算符是用在常量表达式中的,用来确定一个标识符是否已经使用 #define 定义过。如果指定的标识符已定义,则值为真(非零)。如果指定的标识符未定义,则值为假(零)。下面的实例演示了 defined() 运算符的用法:
#include
#if !defined (MESSAGE)
#define MESSAGE "You wish!"
#endif
int main(void)
{
printf("Here is the message: %s\n", MESSAGE);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Here is the message: You wish!
CPP 一个强大的功能是可以使用参数化的宏来模拟函数。例如,下面的代码是计算一个数的平方:
int square(int x) {
return x * x;
}
我们可以使用宏重写上面的代码,如下:
#define square(x) ((x) * (x))
在使用带有参数的宏之前,必须使用 #define 指令定义。参数列表是括在圆括号内,且必须紧跟在宏名称的后边。宏名称和左圆括号之间不允许有空格。例如:
#include
#define MAX(x,y) ((x) > (y) ? (x) : (y))
int main(void)
{
printf("Max between 20 and 10 is %d\n", MAX(10, 20));
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Max between 20 and 10 is 20
头文件是扩展名为 .h 的文件,包含了 C 函数声明和宏定义,被多个源文件中引用共享。有两种类型的头文件:程序员编写的头文件和编译器自带的头文件。
在程序中要使用头文件,需要使用 C 预处理指令 #include 来引用它。前面我们已经看过 stdio.h 头文件,它是编译器自带的头文件。
引用头文件相当于复制头文件的内容,但是我们不会直接在源文件中复制头文件的内容,因为这么做很容易出错,特别在程序是由多个源文件组成的时候。
A simple practice in C 或 C++ 程序中,建议把所有的常量、宏、系统全局变量和函数原型写在头文件中,在需要的时候随时引用这些头文件。
使用预处理指令 #include 可以引用用户和系统头文件。它的形式有以下两种:
#include
这种形式用于引用系统头文件。它在系统目录的标准列表中搜索名为 file 的文件。在编译源代码时,您可以通过 -I 选项把目录前置在该列表前。
#include "file"
这种形式用于引用用户头文件。它在包含当前文件的目录中搜索名为 file 的文件。在编译源代码时,您可以通过 -I 选项把目录前置在该列表前。
#include 指令会指示 C 预处理器浏览指定的文件作为输入。预处理器的输出包含了已经生成的输出,被引用文件生成的输出以及 #include 指令之后的文本输出。例如,如果您有一个头文件 header.h,如下:
char *test (void);
和一个使用了头文件的主程序 program.c,如下:
int x;
#include "header.h"
int main (void)
{
puts (test ());
}
编译器会看到如下的代码信息:
int x;
char *test (void);
int main (void)
{
puts (test ());
}
如果一个头文件被引用两次,编译器会处理两次头文件的内容,这将产生错误。为了防止这种情况,标准的做法是把文件的整个内容放在条件编译语句中,如下:
#ifndef HEADER_FILE
#define HEADER_FILE
the entire header file file
#endif
这种结构就是通常所说的包装器 #ifndef。当再次引用头文件时,条件为假,因为 HEADER_FILE 已定义。此时,预处理器会跳过文件的整个内容,编译器会忽略它。
有时需要从多个不同的头文件中选择一个引用到程序中。例如,需要指定在不同的操作系统上使用的配置参数。您可以通过一系列条件来实现这点,如下:
#if SYSTEM_1
# include "system_1.h"
#elif SYSTEM_2
# include "system_2.h"
#elif SYSTEM_3
...
#endif
但是如果头文件比较多的时候,这么做是很不妥当的,预处理器使用宏来定义头文件的名称。这就是所谓的有条件引用。它不是用头文件的名称作为 #include 的直接参数,您只需要使用宏名称代替即可:
#define SYSTEM_H "system_1.h"
...
#include SYSTEM_H
SYSTEM_H 会扩展,预处理器会查找 system_1.h,就像 #include 最初编写的那样。SYSTEM_H 可通过 -D 选项被您的 Makefile 定义。
强制类型转换是把变量从一种类型转换为另一种数据类型。例如,如果您想存储一个 long 类型的值到一个简单的整型中,您需要把 long 类型强制转换为 int 类型。您可以使用强制类型转换运算符来把值显式地从一种类型转换为另一种类型,如下所示:
(type_name) expression
请看下面的实例,使用强制类型转换运算符把一个整数变量除以另一个整数变量,得到一个浮点数:
#include
int main()
{
int sum = 17, count = 5;
double mean;
mean = (double) sum / count;
printf("Value of mean : %f\n", mean );
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of mean : 3.400000
这里要注意的是强制类型转换运算符的优先级大于除法,因此 sum 的值首先被转换为 double 型,然后除以 count,得到一个类型为 double 的值。
类型转换可以是隐式的,由编译器自动执行,也可以是显式的,通过使用强制类型转换运算符来指定。在编程时,有需要类型转换的时候都用上强制类型转换运算符,是一种良好的编程习惯。
整数提升是指把小于 int 或 unsigned int 的整数类型转换为 int 或 unsigned int 的过程。请看下面的实例,在 int 中添加一个字符:
#include
int main()
{
int i = 17;
char c = 'c'; /* ascii 值是 99 */
int sum;
sum = i + c;
printf("Value of sum : %d\n", sum );
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of sum : 116在这里,sum 的值为 116,因为编译器进行了整数提升,在执行实际加法运算时,把 'c' 的值转换为对应的 ascii 值。
常用的算术转换是隐式地把值强制转换为相同的类型。编译器首先执行整数提升,如果操作数类型不同,则它们会被转换为下列层次中出现的最高层次的类型:
常用的算术转换不适用于赋值运算符、逻辑运算符 && 和 ||。让我们看看下面的实例来理解这个概念:
#include
int main()
{
int i = 17;
char c = 'c'; /* ascii 值是 99 */
float sum;
sum = i + c;
printf("Value of sum : %f\n", sum );
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of sum : 116.000000在这里,c 首先被转换为整数,但是由于最后的值是 float 型的,所以会应用常用的算术转换,编译器会把 i 和 c 转换为浮点型,并把它们相加得到一个浮点数。
C 语言不提供对错误处理的直接支持,但是作为一种系统编程语言,它以返回值的形式允许您访问底层数据。在发生错误时,大多数的 C 或 UNIX 函数调用返回 1 或 NULL,同时会设置一个错误代码 errno,该错误代码是全局变量,表示在函数调用期间发生了错误。您可以在 errno.h 头文件中找到各种各样的错误代码。
所以,C 程序员可以通过检查返回值,然后根据返回值决定采取哪种适当的动作。开发人员应该在程序初始化时,把 errno 设置为 0,这是一种良好的编程习惯。0 值表示程序中没有错误。
C 语言提供了 perror() 和 strerror() 函数来显示与 errno 相关的文本消息。
让我们来模拟一种错误情况,尝试打开一个不存在的文件。您可以使用多种方式来输出错误消息,在这里我们使用函数来演示用法。另外有一点需要注意,您应该使用 stderr 文件流来输出所有的错误。
#include
#include
#include
extern int errno ;
int main ()
{
FILE * pf;
int errnum;
pf = fopen ("unexist.txt", "rb");
if (pf == NULL)
{
errnum = errno;
fprintf(stderr, "错误号: %d\n", errno);
perror("通过 perror 输出错误");
fprintf(stderr, "打开文件错误: %s\n", strerror( errnum ));
}
else
{
fclose (pf);
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
错误号: 2 通过 perror 输出错误: No such file or directory 打开文件错误: No such file or directory
在进行除法运算时,如果不检查除数是否为零,则会导致一个运行时错误。
为了避免这种情况发生,下面的代码在进行除法运算前会先检查除数是否为零:
#include
#include
int main()
{
int dividend = 20;
int divisor = 0;
int quotient;
if( divisor == 0){
fprintf(stderr, "除数为 0 退出运行...\n");
exit(-1);
}
quotient = dividend / divisor;
fprintf(stderr, "quotient 变量的值为 : %d\n", quotient );
exit(0);
}
当上面的代码被编译和执行时,它会产生下列结果:
除数为 0 退出运行...
通常情况下,程序成功执行完一个操作正常退出的时候会带有值 EXIT_SUCCESS。在这里,EXIT_SUCCESS 是宏,它被定义为 0。
如果程序中存在一种错误情况,当您退出程序时,会带有状态值 EXIT_FAILURE,被定义为 -1。所以,上面的程序可以写成:
#include
#include
main()
{
int dividend = 20;
int divisor = 5;
int quotient;
if( divisor == 0){
fprintf(stderr, "除数为 0 退出运行...\n");
exit(EXIT_FAILURE);
}
quotient = dividend / divisor;
fprintf(stderr, "quotient 变量的值为: %d\n", quotient );
exit(EXIT_SUCCESS);
}
当上面的代码被编译和执行时,它会产生下列结果:
quotient 变量的值为 : 4
递归指的是在函数的定义中使用函数自身的方法。
语法格式如下:
void recursion()
{
statements;
... ... ...
recursion(); /* 函数调用自身 */
... ... ...
}
int main()
{
recursion();
}
流程图:
C 语言支持递归,即一个函数可以调用其自身。但在使用递归时,程序员需要注意定义一个从函数退出的条件,否则会进入死循环。
递归函数在解决许多数学问题上起了至关重要的作用,比如计算一个数的阶乘、生成斐波那契数列,等等。
下面的实例使用递归函数计算一个给定的数的阶乘:
#include
double factorial(unsigned int i)
{
if(i <= 1)
{
return 1;
}
return i * factorial(i - 1);
}
int main()
{
int i = 15;
printf("%d 的阶乘为 %f\n", i, factorial(i));
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
15 的阶乘为 1307674368000.000000
下面的实例使用递归函数生成一个给定的数的斐波那契数列:
#include
int fibonaci(int i)
{
if(i == 0)
{
return 0;
}
if(i == 1)
{
return 1;
}
return fibonaci(i-1) + fibonaci(i-2);
}
int main()
{
int i;
for (i = 0; i < 10; i++)
{
printf("%d\t\n", fibonaci(i));
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
0 1 1 2 3 5 8 13 21 34
#include
unsigned long long factorial(int n) {
if (n == 0) {
return 1; // 基本情况
} else {
return n * factorial(n - 1); // 递归调用
}
}
int main() {
int num = 5;
unsigned long long result = factorial(num);
printf("Factorial of %d = %llu\n", num, result);
return 0;
}
#include
double power(double base, int exponent) {
if (exponent == 0) {
return 1.0; // 基本情况
} else {
return base * power(base, exponent - 1); // 递归调用
}
}
int main() {
double base = 2.0;
int exponent = 3;
double result = power(base, exponent);
printf("%lf^%d = %lf\n", base, exponent, result);
return 0;
}
汉诺塔问题是一个著名的递归问题,要求将一组盘子从一根柱子移动到另一根柱子,遵循一定规则。递归算法如下
#include
void hanoi(int n, char source, char auxiliary, char target) {
if (n == 1) {
printf("Move disk 1 from %c to %c\n", source, target);
return;
}
hanoi(n - 1, source, target, auxiliary);
printf("Move disk %d from %c to %c\n", n, source, target);
hanoi(n - 1, auxiliary, source, target);
}
int main() {
int numDisks = 3;
hanoi(numDisks, 'A', 'B', 'C');
return 0;
}
二叉树遍历是一个常见的递归问题,包括前序遍历、中序遍历和后序遍历。以下是前序遍历的示例:
#include
#include
// 二叉树结构
struct TreeNode {
int data;
struct TreeNode* left;
struct TreeNode* right;
};
void preOrder(struct TreeNode* root) {
if (root != NULL) {
printf("%d ", root->data); // 先访问根节点
preOrder(root->left); // 再遍历左子树
preOrder(root->right); // 最后遍历右子树
}
}
int main() {
struct TreeNode* root = (struct TreeNode*)malloc(sizeof(struct TreeNode));
root->data = 1;
root->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));
root->left->data = 2;
root->left->left = NULL;
root->left->right = NULL;
root->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));
root->right->data = 3;
root->right->left = NULL;
root->right->right = NULL;
preOrder(root);
return 0;
}
有时,您可能会碰到这样的情况,您希望函数带有可变数量的参数,而不是预定义数量的参数。
C 语言为这种情况提供了一个解决方案,它允许您定义一个函数,能根据具体的需求接受可变数量的参数。
声明方式为:
int func_name(int arg1, ...);
其中,省略号 ... 表示可变参数列表。
下面的实例演示了这种函数的使用:
int func(int, ... ) {
.
.
.
}
int main() {
func(2, 2, 3);
func(3, 2, 3, 4);
}
请注意,函数 func() 最后一个参数写成省略号,即三个点号(...),省略号之前的那个参数是 int,代表了要传递的可变参数的总数。为了使用这个功能,您需要使用 stdarg.h 头文件,该文件提供了实现可变参数功能的函数和宏。具体步骤如下:
常用的宏有:
va_start(ap, last_arg)
:初始化可变参数列表。ap
是一个 va_list
类型的变量,last_arg
是最后一个固定参数的名称(也就是可变参数列表之前的参数)。该宏将 ap
指向可变参数列表中的第一个参数。
va_arg(ap, type)
:获取可变参数列表中的下一个参数。ap
是一个 va_list
类型的变量,type
是下一个参数的类型。该宏返回类型为 type
的值,并将 ap
指向下一个参数。
va_end(ap)
:结束可变参数列表的访问。ap
是一个 va_list
类型的变量。该宏将 ap
置为 NULL
。
现在让我们按照上面的步骤,来编写一个带有可变数量参数的函数,并返回它们的平均值:
#include
#include
double average(int num,...)
{
va_list valist;
double sum = 0.0;
int i;
/* 为 num 个参数初始化 valist */
va_start(valist, num);
/* 访问所有赋给 valist 的参数 */
for (i = 0; i < num; i++)
{
sum += va_arg(valist, int);
}
/* 清理为 valist 保留的内存 */
va_end(valist);
return sum/num;
}
int main()
{
printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2,3,4,5));
printf("Average of 5, 10, 15 = %f\n", average(3, 5,10,15));
}
在上面的例子中,average() 函数接受一个整数 num 和任意数量的整数参数。函数内部使用 va_list 类型的变量 va_list 来访问可变参数列表。在循环中,每次使用 va_arg() 宏获取下一个整数参数,并输出。最后,在函数结束时使用 va_end() 宏结束可变参数列表的访问。
当上面的代码被编译和执行时,它会产生下列结果。应该指出的是,函数 average() 被调用两次,每次第一个参数都是表示被传的可变参数的总数。省略号被用来传递可变数量的参数。
Average of 2, 3, 4, 5 = 3.500000 Average of 5, 10, 15 = 10.000000
在 C 语言中,内存是通过指针变量来管理的。指针是一个变量,它存储了一个内存地址,这个内存地址可以指向任何数据类型的变量,包括整数、浮点数、字符和数组等。C 语言提供了一些函数和运算符,使得程序员可以对内存进行操作,包括分配、释放、移动和复制等。
序号 | 函数和描述 |
---|---|
1 | void *calloc(int num, int size); 在内存中动态地分配 num 个长度为 size 的连续空间,并将每一个字节都初始化为 0。所以它的结果是分配了 num*size 个字节长度的内存空间,并且每个字节的值都是 0。 |
2 | void free(void *address); 该函数释放 address 所指向的内存块,释放的是动态分配的内存空间。 |
3 | void *malloc(int num); 在堆区分配一块指定大小的内存空间,用来存放数据。这块内存空间在函数执行完成后不会被初始化,它们的值是未知的。 |
4 | void *realloc(void *address, int newsize); 该函数重新分配内存,把内存扩展到 newsize。 |
注意:void * 类型表示未确定类型的指针。C、C++ 规定 void * 类型可以通过类型转换强制转换为任何其它类型的指针。
编程时,如果您预先知道数组的大小,那么定义数组时就比较容易。例如,一个存储人名的数组,它最多容纳 100 个字符,所以您可以定义数组,如下所示:
char name[100];
但是,如果您预先不知道需要存储的文本长度,例如您想存储有关一个主题的详细描述。在这里,我们需要定义一个指针,该指针指向未定义所需内存大小的字符,后续再根据需求来分配内存,如下所示:
#include
#include
#include
int main()
{
char name[100];
char *description;
strcpy(name, "Zara Ali");
/* 动态分配内存 */
description = (char *)malloc( 200 * sizeof(char) );
if( description == NULL )
{
fprintf(stderr, "Error - unable to allocate required memory\n");
}
else
{
strcpy( description, "Zara ali a DPS student in class 10th");
}
printf("Name = %s\n", name );
printf("Description: %s\n", description );
}
当上面的代码被编译和执行时,它会产生下列结果:
Name = Zara Ali Description: Zara ali a DPS student in class 10th
上面的程序也可以使用 calloc() 来编写,只需要把 malloc 替换为 calloc 即可,如下所示:
calloc(200, sizeof(char));
当动态分配内存时,您有完全控制权,可以传递任何大小的值。而那些预先定义了大小的数组,一旦定义则无法改变大小。
当程序退出时,操作系统会自动释放所有分配给程序的内存,但是,建议您在不需要内存时,都应该调用函数 free() 来释放内存。
或者,您可以通过调用函数 realloc() 来增加或减少已分配的内存块的大小。让我们使用 realloc() 和 free() 函数,再次查看上面的实例:
#include
#include
#include
int main()
{
char name[100];
char *description;
strcpy(name, "Zara Ali");
/* 动态分配内存 */
description = (char *)malloc( 30 * sizeof(char) );
if( description == NULL )
{
fprintf(stderr, "Error - unable to allocate required memory\n");
}
else
{
strcpy( description, "Zara ali a DPS student.");
}
/* 假设您想要存储更大的描述信息 */
description = (char *) realloc( description, 100 * sizeof(char) );
if( description == NULL )
{
fprintf(stderr, "Error - unable to allocate required memory\n");
}
else
{
strcat( description, "She is in class 10th");
}
printf("Name = %s\n", name );
printf("Description: %s\n", description );
/* 使用 free() 函数释放内存 */
free(description);
}
当上面的代码被编译和执行时,它会产生下列结果:
Name = Zara Ali Description: Zara ali a DPS student.She is in class 10th
您可以尝试一下不重新分配额外的内存,strcat() 函数会生成一个错误,因为存储 description 时可用的内存不足。
malloc() 函数:用于动态分配内存。它接受一个参数,即需要分配的内存大小(以字节为单位),并返回一个指向分配内存的指针。
free() 函数:用于释放先前分配的内存。它接受一个指向要释放内存的指针作为参数,并将该内存标记为未使用状态。
calloc() 函数:用于动态分配内存,并将其初始化为零。它接受两个参数,即需要分配的内存块数和每个内存块的大小(以字节为单位),并返回一个指向分配内存的指针。
realloc() 函数:用于重新分配内存。它接受两个参数,即一个先前分配的指针和一个新的内存大小,然后尝试重新调整先前分配的内存块的大小。如果调整成功,它将返回一个指向重新分配内存的指针,否则返回一个空指针。
sizeof 运算符:用于获取数据类型或变量的大小(以字节为单位)。
指针运算符:用于获取指针所指向的内存地址或变量的值。
& 运算符:用于获取变量的内存地址。
* 运算符:用于获取指针所指向的变量的值。
-> 运算符:用于指针访问结构体成员,语法为 pointer->member,等价于 (*pointer).member。
memcpy() 函数:用于从源内存区域复制数据到目标内存区域。它接受三个参数,即目标内存区域的指针、源内存区域的指针和要复制的数据大小(以字节为单位)。
memmove() 函数:类似于 memcpy() 函数,但它可以处理重叠的内存区域。它接受三个参数,即目标内存区域的指针、源内存区域的指针和要复制的数据大小(以字节为单位)。
执行程序时,可以从命令行传值给 C 程序。这些值被称为命令行参数,它们对程序很重要,特别是当您想从外部控制程序,而不是在代码内对这些值进行硬编码时,就显得尤为重要了。
命令行参数是使用 main() 函数参数来处理的,其中,argc 是指传入参数的个数,argv[] 是一个指针数组,指向传递给程序的每个参数。下面是一个简单的实例,检查命令行是否有提供参数,并根据参数执行相应的动作:
#include
int main( int argc, char *argv[] )
{
if( argc == 2 )
{
printf("The argument supplied is %s\n", argv[1]);
}
else if( argc > 2 )
{
printf("Too many arguments supplied.\n");
}
else
{
printf("One argument expected.\n");
}
}
使用一个参数,编译并执行上面的代码,它会产生下列结果:
$./a.out testing The argument supplied is testing
使用两个参数,编译并执行上面的代码,它会产生下列结果:
$./a.out testing1 testing2
Too many arguments supplied.
不传任何参数,编译并执行上面的代码,它会产生下列结果:
$./a.out
One argument expected
应当指出的是,argv[0] 存储程序的名称,argv[1] 是一个指向第一个命令行参数的指针,*argv[n] 是最后一个参数。如果没有提供任何参数,argc 将为 1,否则,如果传递了一个参数,argc 将被设置为 2。
多个命令行参数之间用空格分隔,但是如果参数本身带有空格,那么传递参数的时候应把参数放置在双引号 "" 或单引号 '' 内部。让我们重新编写上面的实例,有一个空间,那么你可以通过这样的观点,把它们放在双引号或单引号""""。让我们重新编写上面的实例,向程序传递一个放置在双引号内部的命令行参数:
#include
int main( int argc, char *argv[] )
{
printf("Program name %s\n", argv[0]);
if( argc == 2 )
{
printf("The argument supplied is %s\n", argv[1]);
}
else if( argc > 2 )
{
printf("Too many arguments supplied.\n");
}
else
{
printf("One argument expected.\n");
}
}
使用一个用空格分隔的简单参数,参数括在双引号中,编译并执行上面的代码,它会产生下列结果:
$./a.out "testing1 testing2" Progranm name ./a.out The argument supplied is testing1 testing2
菜鸟教程C语言排序算法教程
冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序(如从大到小、首字母从A到Z)错误就把他们交换过来。
#include
void bubble_sort(int arr[], int len) {
int i, j, temp;
for (i = 0; i < len - 1; i++)
for (j = 0; j < len - 1 - i; j++)
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
int main() {
int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };
int len = (int) sizeof(arr) / sizeof(*arr);
bubble_sort(arr, len);
int i;
for (i = 0; i < len; i++)
printf("%d ", arr[i]);
return 0;
}
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
void selection_sort(int a[], int len)
{
int i,j,temp;
for (i = 0 ; i < len - 1 ; i++)
{
int min = i; // 记录最小值,第一个元素默认最小
for (j = i + 1; j < len; j++) // 访问未排序的元素
{
if (a[j] < a[min]) // 找到目前最小值
{
min = j; // 记录最小值
}
}
if(min != i)
{
temp=a[min]; // 交换两个变量
a[min]=a[i];
a[i]=temp;
}
/* swap(&a[min], &a[i]); */ // 使用自定义函数交換
}
}
/*
void swap(int *a,int *b) // 交换两个变量
{
int temp = *a;
*a = *b;
*b = temp;
}
*/
插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到 {\displaystyle O(1)} {\displaystyle O(1)}的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后
挪位,为最新元素提供插入空间。
void insertion_sort(int arr[], int len){
int i,j,temp;
for (i=1;i0 && arr[j-1]>temp;j--)
arr[j] = arr[j-1];
arr[j] = temp;
}
}
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
void shell_sort(int arr[], int len) {
int gap, i, j;
int temp;
for (gap = len >> 1; gap > 0; gap = gap >> 1)
for (i = gap; i < len; i++) {
temp = arr[i];
for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)
arr[j + gap] = arr[j];
arr[j + gap] = temp;
}
}
把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。
可从上到下或从下到上进行。
迭代法
int min(int x, int y) {
return x < y ? x : y;
}
void merge_sort(int arr[], int len) {
int* a = arr;
int* b = (int*) malloc(len * sizeof(int));
int seg, start;
for (seg = 1; seg < len; seg += seg) {
for (start = 0; start < len; start += seg + seg) {
int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);
int k = low;
int start1 = low, end1 = mid;
int start2 = mid, end2 = high;
while (start1 < end1 && start2 < end2)
b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
while (start1 < end1)
b[k++] = a[start1++];
while (start2 < end2)
b[k++] = a[start2++];
}
int* temp = a;
a = b;
b = temp;
}
if (a != arr) {
int i;
for (i = 0; i < len; i++)
b[i] = a[i];
b = a;
}
free(b);
}
递归法
void merge_sort_recursive(int arr[], int reg[], int start, int end) {
if (start >= end)
return;
int len = end - start, mid = (len >> 1) + start;
int start1 = start, end1 = mid;
int start2 = mid + 1, end2 = end;
merge_sort_recursive(arr, reg, start1, end1);
merge_sort_recursive(arr, reg, start2, end2);
int k = start;
while (start1 <= end1 && start2 <= end2)
reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
while (start1 <= end1)
reg[k++] = arr[start1++];
while (start2 <= end2)
reg[k++] = arr[start2++];
for (k = start; k <= end; k++)
arr[k] = reg[k];
}
void merge_sort(int arr[], const int len) {
int reg[len];
merge_sort_recursive(arr, reg, 0, len - 1);
}
在区间中随机挑选一个元素作基准,将小于基准的元素放在基准之前,大于基准的元素放在基准之后,再分别对小数区与大数区进行排序。
迭代法
typedef struct _Range {
int start, end;
} Range;
Range new_Range(int s, int e) {
Range r;
r.start = s;
r.end = e;
return r;
}
void swap(int *x, int *y) {
int t = *x;
*x = *y;
*y = t;
}
void quick_sort(int arr[], const int len) {
if (len <= 0)
return; // 避免len等於負值時引發段錯誤(Segment Fault)
// r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素
Range r[len];
int p = 0;
r[p++] = new_Range(0, len - 1);
while (p) {
Range range = r[--p];
if (range.start >= range.end)
continue;
int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點
int left = range.start, right = range.end;
do
{
while (arr[left] < mid) ++left; // 檢測基準點左側是否符合要求
while (arr[right] > mid) --right; //檢測基準點右側是否符合要求
if (left <= right)
{
swap(&arr[left],&arr[right]);
left++;right--; // 移動指針以繼續
}
} while (left <= right);
if (range.start < right) r[p++] = new_Range(range.start, right);
if (range.end > left) r[p++] = new_Range(left, range.end);
}
}
递归法
void swap(int *x, int *y) {
int t = *x;
*x = *y;
*y = t;
}
void quick_sort_recursive(int arr[], int start, int end) {
if (start >= end)
return;
int mid = arr[end];
int left = start, right = end - 1;
while (left < right) {
while (arr[left] < mid && left < right)
left++;
while (arr[right] >= mid && left < right)
right--;
swap(&arr[left], &arr[right]);
}
if (arr[left] >= arr[end])
swap(&arr[left], &arr[end]);
else
left++;
if (left)
quick_sort_recursive(arr, start, left - 1);
quick_sort_recursive(arr, left + 1, end);
}
void quick_sort(int arr[], int len) {
quick_sort_recursive(arr, 0, len - 1);
}
C 标准库的 assert.h头文件提供了一个名为 assert 的宏,它可用于验证程序做出的假设,并在假设为假时输出诊断消息。
已定义的宏 assert 指向另一个宏 NDEBUG,宏 NDEBUG 不是
#define assert(ignore) ((void)0)
下面列出了头文件 assert.h 中定义的唯一的函数:
序号 | 函数 & 描述 |
---|---|
1 | void assert(int expression) 这实际上是一个宏,不是一个函数,可用于在 C 程序中添加诊断。 |
C 标准库的 ctype.h 头文件提供了一些函数,可用于测试和映射字符。
这些函数接受 int 作为参数,它的值必须是 EOF 或表示为一个无符号字符。
如果参数 c 满足描述的条件,则这些函数返回非零(true)。如果参数 c 不满足描述的条件,则这些函数返回零。
下面列出了头文件 ctype.h 中定义的函数:
序号 | 函数 & 描述 |
---|---|
1 | int isalnum(int c) 该函数检查所传的字符是否是字母和数字。 |
2 | int isalpha(int c) 该函数检查所传的字符是否是字母。 |
3 | int iscntrl(int c) 该函数检查所传的字符是否是控制字符。 |
4 | int isdigit(int c) 该函数检查所传的字符是否是十进制数字。 |
5 | int isgraph(int c) 该函数检查所传的字符是否有图形表示法。 |
6 | int islower(int c) 该函数检查所传的字符是否是小写字母。 |
7 | int isprint(int c) 该函数检查所传的字符是否是可打印的。 |
8 | int ispunct(int c) 该函数检查所传的字符是否是标点符号字符。 |
9 | int isspace(int c) 该函数检查所传的字符是否是空白字符。 |
10 | int isupper(int c) 该函数检查所传的字符是否是大写字母。 |
11 | int isxdigit(int c) 该函数检查所传的字符是否是十六进制数字。 |
标准库还包含了两个转换函数,它们接受并返回一个 "int"
序号 | 函数 & 描述 |
---|---|
1 | int tolower(int c) 该函数把大写字母转换为小写字母。 |
2 | int toupper(int c) 该函数把小写字母转换为大写字母。 |
序号 | 字符类 & 描述 |
---|---|
1 | 数字 完整的数字集合 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } |
2 | 十六进制数字 集合 { 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f } |
3 | 小写字母 集合 { a b c d e f g h i j k l m n o p q r s t u v w x y z } |
4 | 大写字母 集合 {A B C D E F G H I J K L M N O P Q R S T U V W X Y Z } |
5 | 字母 小写字母和大写字母的集合 |
6 | 字母数字字符 数字、小写字母和大写字母的集合 |
7 | 标点符号字符 集合 ! " # $ % & ' ( ) * + , - . / : ; < = > ? @ [ \ ] ^ _ ` { | } ~ |
8 | 图形字符 字母数字字符和标点符号字符的集合 |
9 | 空格字符 制表符、换行符、垂直制表符、换页符、回车符、空格符的集合。 |
10 | 可打印字符 字母数字字符、标点符号字符和空格字符的集合。 |
11 | 控制字符 在 ASCII 编码中,这些字符的八进制代码是从 000 到 037,以及 177(DEL)。 |
12 | 空白字符 包括空格符和制表符。 |
13 | 字母字符 小写字母和大写字母的集合。 |
C 标准库的 errno.h 头文件定义了整数变量 errno,它是通过系统调用设置的,在错误事件中的某些库函数表明了什么发生了错误。该宏扩展为类型为 int 的可更改的左值,因此它可以被一个程序读取和修改。
在程序启动时,errno 设置为零,C 标准库中的特定函数修改它的值为一些非零值以表示某些类型的错误。您也可以在适当的时候修改它的值或重置为零。
errno.h 头文件定义了一系列表示不同错误代码的宏,这些宏应扩展为类型为 int 的整数常量表达式。
下面列出了头文件 errno.h 中定义的宏:
序号 | 宏 & 描述 |
---|---|
1 | extern int errno 这是通过系统调用设置的宏,在错误事件中的某些库函数表明了什么发生了错误。 |
2 | EDOM Domain Error 这个宏表示一个域错误,它在输入参数超出数学函数定义的域时发生,errno 被设置为 EDOM。 |
3 | ERANGE Range Error 这个宏表示一个范围错误,它在输入参数超出数学函数定义的范围时发生,errno 被设置为 ERANGE。 |
C 标准库的 float.h 头文件包含了一组与浮点值相关的依赖于平台的常量。这些常量是由 ANSI C 提出的,这让程序更具有可移植性。在讲解这些常量之前,最好先弄清楚浮点数是由下面四个元素组成的:
组件 | 组件描述 |
---|---|
S | 符号 ( +/- ) |
b | 指数表示的基数,2 表示二进制,10 表示十进制,16 表示十六进制,等等... |
e | 指数,一个介于最小值 emin 和最大值 emax 之间的整数。 |
p | 精度,基数 b 的有效位数 |
基于以上 4 个组成部分,一个浮点数的值如下:
floating-point = ( S ) p x be
或
floating-point = (+/-) precision x baseexponent
下面的值是特定实现的,且是通过 #define 指令来定义的,这些值都不得低于下边所给出的值。请注意,所有的实例 FLT 是指类型 float,DBL 是指类型 double,LDBL 是指类型 long double。
宏 | 描述 |
---|---|
FLT_ROUNDS | 定义浮点加法的舍入模式,它可以是下列任何一个值:
|
FLT_RADIX 2 | 这个宏定义了指数表示的基数。基数 2 表示二进制,基数 10 表示十进制,基数 16 表示十六进制。 |
FLT_MANT_DIG DBL_MANT_DIG LDBL_MANT_DIG |
这些宏定义了 FLT_RADIX 基数中的位数。 |
FLT_DIG 6 DBL_DIG 10 LDBL_DIG 10 |
这些宏定义了舍入后不会改变表示的十进制数字的最大值(基数 10)。 |
FLT_MIN_EXP DBL_MIN_EXP LDBL_MIN_EXP |
这些宏定义了基数为 FLT_RADIX 时的指数的最小负整数值。 |
FLT_MIN_10_EXP -37 DBL_MIN_10_EXP -37 LDBL_MIN_10_EXP -37 |
这些宏定义了基数为 10 时的指数的最小负整数值。 |
FLT_MAX_EXP DBL_MAX_EXP LDBL_MAX_EXP |
这些宏定义了基数为 FLT_RADIX 时的指数的最大整数值。 |
FLT_MAX_10_EXP +37 DBL_MAX_10_EXP +37 LDBL_MAX_10_EXP +37 |
这些宏定义了基数为 10 时的指数的最大整数值。 |
FLT_MAX 1E+37 DBL_MAX 1E+37 LDBL_MAX 1E+37 |
这些宏定义最大的有限浮点值。 |
FLT_EPSILON 1E-5 DBL_EPSILON 1E-9 LDBL_EPSILON 1E-9 |
这些宏定义了可表示的最小有效数字。 |
FLT_MIN 1E-37 DBL_MIN 1E-37 LDBL_MIN 1E-37 |
这些宏定义了最小的浮点值。 |
实例
下面的实例演示了 float.h 文件中定义的一些常量的使用。
#include#include int main() { printf("The maximum value of float = %.10e\n", FLT_MAX); printf("The minimum value of float = %.10e\n", FLT_MIN); printf("The number of digits in the number = %.10e\n", FLT_MANT_DIG); }
让我们编译和运行上面的程序,这将产生下列结果:
The maximum value of float = 3.4028234664e+38 The minimum value of float = 1.1754943508e-38 The number of digits in the number = 7.2996655210e-312
limits.h 头文件决定了各种变量类型的各种属性。定义在该头文件中的宏限制了各种变量类型(比如 char、int 和 long)的值。
这些限制指定了变量不能存储任何超出这些限制的值,例如一个无符号可以存储的最大值是 255。
下面的值是特定实现的,且是通过 #define 指令来定义的,这些值都不得低于下边所给出的值。
宏 | 值 | 描述 |
---|---|---|
CHAR_BIT | 8 | 定义一个字节的比特数。 |
SCHAR_MIN | -128 | 定义一个有符号字符的最小值。 |
SCHAR_MAX | 127 | 定义一个有符号字符的最大值。 |
UCHAR_MAX | 255 | 定义一个无符号字符的最大值。 |
CHAR_MIN | 0 | 定义类型 char 的最小值,如果 char 表示负值,则它的值等于 SCHAR_MIN,否则等于 0。 |
CHAR_MAX | 127 | 定义类型 char 的最大值,如果 char 表示负值,则它的值等于 SCHAR_MAX,否则等于 UCHAR_MAX。 |
MB_LEN_MAX | 1 | 定义多字节字符中的最大字节数。 |
SHRT_MIN | -32768 | 定义一个短整型的最小值。 |
SHRT_MAX | +32767 | 定义一个短整型的最大值。 |
USHRT_MAX | 65535 | 定义一个无符号短整型的最大值。 |
INT_MIN | -2147483648 | 定义一个整型的最小值。 |
INT_MAX | 2147483647 | 定义一个整型的最大值。 |
UINT_MAX | 4294967295 | 定义一个无符号整型的最大值。 |
LONG_MIN | -9223372036854775808 | 定义一个长整型的最小值。 |
LONG_MAX | 9223372036854775807 | 定义一个长整型的最大值。 |
ULONG_MAX | 1.8446744e+19 | 定义一个无符号长整型的最大值。 |
实例
下面的实例演示了 limit.h 文件中定义的一些常量的使用。
#include
#include
int main()
{
printf("The number of bits in a byte %d\n", CHAR_BIT);
printf("The minimum value of SIGNED CHAR = %d\n", SCHAR_MIN);
printf("The maximum value of SIGNED CHAR = %d\n", SCHAR_MAX);
printf("The maximum value of UNSIGNED CHAR = %d\n", UCHAR_MAX);
printf("The minimum value of SHORT INT = %d\n", SHRT_MIN);
printf("The maximum value of SHORT INT = %d\n", SHRT_MAX);
printf("The minimum value of INT = %d\n", INT_MIN);
printf("The maximum value of INT = %d\n", INT_MAX);
printf("The minimum value of CHAR = %d\n", CHAR_MIN);
printf("The maximum value of CHAR = %d\n", CHAR_MAX);
printf("The minimum value of LONG = %ld\n", LONG_MIN);
printf("The maximum value of LONG = %ld\n", LONG_MAX);
return(0);
}
让我们编译和运行上面的程序,这将产生下列结果:
The number of bits in a byte 8 The minimum value of SIGNED CHAR = -128 The maximum value of SIGNED CHAR = 127 The maximum value of UNSIGNED CHAR = 255 The minimum value of SHORT INT = -32768 The maximum value of SHORT INT = 32767 The minimum value of INT = -2147483648 The maximum value of INT = 2147483647 The minimum value of CHAR = -128 The maximum value of CHAR = 127 The minimum value of LONG = -9223372036854775808 The maximum value of LONG = 9223372036854775807
locale.h 头文件定义了特定地域的设置,比如日期格式和货币符号。接下来我们将介绍一些宏,以及一个重要的结构 struct lconv 和两个重要的函数。
下面列出了头文件 locale.h 中定义的宏,这些宏将在下列的两个函数中使用:
序号 | 宏 & 描述 |
---|---|
1 | LC_ALL 设置下面的所有选项。 |
2 | LC_COLLATE 影响 strcoll 和 strxfrm 函数。 |
3 | LC_CTYPE 影响所有字符函数。 |
4 | LC_MONETARY 影响 localeconv 函数提供的货币信息。 |
5 | LC_NUMERIC 影响 localeconv 函数提供的小数点格式化和信息。 |
6 | LC_TIME 影响 strftime 函数。 |
下面列出了头文件 locale.h 中定义的函数:
序号 | 函数 & 描述 |
---|---|
1 | char *setlocale(int category, const char *locale) 设置或读取地域化信息。 |
2 | struct lconv *localeconv(void) 设置或读取地域化信息。 |
typedef struct { char *decimal_point; char *thousands_sep; char *grouping; char *int_curr_symbol; char *currency_symbol; char *mon_decimal_point; char *mon_thousands_sep; char *mon_grouping; char *positive_sign; char *negative_sign; char int_frac_digits; char frac_digits; char p_cs_precedes; char p_sep_by_space; char n_cs_precedes; char n_sep_by_space; char p_sign_posn; char n_sign_posn; } lconv
以下是各字段的描述:
序号 | 字段 & 描述 |
---|---|
1 | decimal_point 用于非货币值的小数点字符。 |
2 | thousands_sep 用于非货币值的千位分隔符。 |
3 | grouping 一个表示非货币量中每组数字大小的字符串。每个字符代表一个整数值,每个整数指定当前组的位数。值为 0 意味着前一个值将应用于剩余的分组。 |
4 | int_curr_symbol 国际货币符号使用的字符串。前三个字符是由 ISO 4217:1987 指定的,第四个字符用于分隔货币符号和货币量。 |
5 | currency_symbol 用于货币的本地符号。 |
6 | mon_decimal_point 用于货币值的小数点字符。 |
7 | mon_thousands_sep 用于货币值的千位分隔符。 |
8 | mon_grouping 一个表示货币值中每组数字大小的字符串。每个字符代表一个整数值,每个整数指定当前组的位数。值为 0 意味着前一个值将应用于剩余的分组。 |
9 | positive_sign 用于正货币值的字符。 |
10 | negative_sign 用于负货币值的字符。 |
11 | int_frac_digits 国际货币值中小数点后要显示的位数。 |
12 | frac_digits 货币值中小数点后要显示的位数。 |
13 | p_cs_precedes 如果等于 1,则 currency_symbol 出现在正货币值之前。如果等于 0,则 currency_symbol 出现在正货币值之后。 |
14 | p_sep_by_space 如果等于 1,则 currency_symbol 和正货币值之间使用空格分隔。如果等于 0,则 currency_symbol 和正货币值之间不使用空格分隔。 |
15 | n_cs_precedes 如果等于 1,则 currency_symbol 出现在负货币值之前。如果等于 0,则 currency_symbol 出现在负货币值之后。 |
16 | n_sep_by_space 如果等于 1,则 currency_symbol 和负货币值之间使用空格分隔。如果等于 0,则 currency_symbol 和负货币值之间不使用空格分隔。 |
17 | p_sign_posn 表示正货币值中正号的位置。 |
18 | n_sign_posn 表示负货币值中负号的位置。 |
下面的值用于 p_sign_posn 和 n_sign_posn:
值 | 描述 |
---|---|
0 | 封装值和 currency_symbol 的括号。 |
1 | 放置在值和 currency_symbol 之前的符号。 |
2 | 放置在值和 currency_symbol 之后的符号。 |
3 | 紧挨着放置在值和 currency_symbol 之前的符号。 |
4 | 紧挨着放置在值和 currency_symbol 之后的符号。 |
math.h 头文件定义了各种数学函数和一个宏。在这个库中所有可用的功能都带有一个 double 类型的参数,且都返回 double 类型的结果。
下面是这个库中定义的唯一的一个宏:
序号 | 宏 & 描述 |
---|---|
1 | HUGE_VAL 当函数的结果不可以表示为浮点数时。如果是因为结果的幅度太大以致于无法表示,则函数会设置 errno 为 ERANGE 来表示范围错误,并返回一个由宏 HUGE_VAL 或者它的否定(- HUGE_VAL)命名的一个特定的很大的值。 如果结果的幅度太小,则会返回零值。在这种情况下,error 可能会被设置为 ERANGE,也有可能不会被设置为 ERANGE。 |
下面列出了头文件 math.h 中定义的函数:
序号 | 函数 & 描述 |
---|---|
1 | double acos(double x) 返回以弧度表示的 x 的反余弦。 |
2 | double asin(double x) 返回以弧度表示的 x 的反正弦。 |
3 | double atan(double x) 返回以弧度表示的 x 的反正切。 |
4 | double atan2(double y, double x) 返回以弧度表示的 y/x 的反正切。y 和 x 的值的符号决定了正确的象限。 |
5 | double cos(double x) 返回弧度角 x 的余弦。 |
6 | double cosh(double x) 返回 x 的双曲余弦。 |
7 | double sin(double x) 返回弧度角 x 的正弦。 |
8 | double sinh(double x) 返回 x 的双曲正弦。 |
9 | double tanh(double x) 返回 x 的双曲正切。 |
10 | double exp(double x) 返回 e 的 x 次幂的值。 |
11 | double frexp(double x, int *exponent) 把浮点数 x 分解成尾数和指数。返回值是尾数,并将指数存入 exponent 中。所得的值是 x = mantissa * 2 ^ exponent。 |
12 | double ldexp(double x, int exponent) 返回 x 乘以 2 的 exponent 次幂。 |
13 | double log(double x) 返回 x 的自然对数(基数为 e 的对数)。 |
14 | double log10(double x) 返回 x 的常用对数(基数为 10 的对数)。 |
15 | double modf(double x, double *integer) 返回值为小数部分(小数点后的部分),并设置 integer 为整数部分。 |
16 | double pow(double x, double y) 返回 x 的 y 次幂。 |
17 | double sqrt(double x) 返回 x 的平方根。 |
18 | double ceil(double x) 返回大于或等于 x 的最小的整数值。 |
19 | double fabs(double x) 返回 x 的绝对值。 |
20 | double floor(double x) 返回小于或等于 x 的最大的整数值。 |
21 | double fmod(double x, double y) 返回 x 除以 y 的余数。 |
setjmp.h 头文件定义了宏 setjmp()、函数 longjmp() 和变量类型 jmp_buf,该变量类型会绕过正常的函数调用和返回规则。
下面列出了头文件 setjmp.h 中定义的变量:
序号 | 变量 & 描述 |
---|---|
1 | jmp_buf 这是一个用于存储宏 setjmp() 和函数 longjmp() 相关信息的数组类型。 |
下面是这个库中定义的唯一的一个宏:
序号 | 宏 & 描述 |
---|---|
1 | int setjmp(jmp_buf environment) 这个宏把当前环境保存在变量 environment 中,以便函数 longjmp() 后续使用。如果这个宏直接从宏调用中返回,则它会返回零,但是如果它从 longjmp() 函数调用中返回,则它会返回一个非零值。 |
下面是头文件 setjmp.h 中定义的唯一的一个函数:
序号 | 函数 & 描述 |
---|---|
1 | void longjmp(jmp_buf environment, int value) 该函数恢复最近一次调用 setjmp() 宏时保存的环境,jmp_buf 参数的设置是由之前调用 setjmp() 生成的。 |
signal.h 头文件定义了一个变量类型 sig_atomic_t、两个函数调用和一些宏来处理程序执行期间报告的不同信号。
下面是头文件 signal.h 中定义的变量类型:
序号 | 变量 & 描述 |
---|---|
1 | sig_atomic_t 这是 int 类型,在信号处理程序中作为变量使用。它是一个对象的整数类型,该对象可以作为一个原子实体访问,即使存在异步信号时,该对象可以作为一个原子实体访问。 |
下面是头文件 signal.h 中定义的宏,这些宏将在下列两个函数中使用。SIG_ 宏与 signal 函数一起使用来定义信号的功能。
序号 | 宏 & 描述 |
---|---|
1 | SIG_DFL 默认的信号处理程序。 |
2 | SIG_ERR 表示一个信号错误。 |
3 | SIG_IGN 忽视信号。 |
SIG 宏用于表示以下各种条件的信号码:
序号 | 宏 & 描述 |
---|---|
1 | SIGABRT 程序异常终止。 |
2 | SIGFPE 算术运算出错,如除数为 0 或溢出。 |
3 | SIGILL 非法函数映象,如非法指令。 |
4 | SIGINT 中断信号,如 ctrl-C。 |
5 | SIGSEGV 非法访问存储器,如访问不存在的内存单元。 |
6 | SIGTERM 发送给本程序的终止请求信号。 |
下面是头文件 signal.h 中定义的函数:
序号 | 函数 & 描述 |
---|---|
1 | void (*signal(int sig, void (*func)(int)))(int) 该函数设置一个函数来处理信号,即信号处理程序。 |
2 | int raise(int sig) 该函数会促使生成信号 sig。sig 参数与 SIG 宏兼容。 |
stdarg.h 头文件定义了一个变量类型 va_list 和三个宏,这三个宏可用于在参数个数未知(即参数个数可变)时获取函数中的参数。
可变参数的函数通在参数列表的末尾是使用省略号(,...)定义的。
下面是头文件 stdarg.h 中定义的变量类型:
序号 | 变量 & 描述 |
---|---|
1 | va_list 这是一个适用于 va_start()、va_arg() 和 va_end() 这三个宏存储信息的类型。 |
下面是头文件 stdarg.h 中定义的宏:
序号 | 宏 & 描述 |
---|---|
1 | void va_start(va_list ap, last_arg) 这个宏初始化 ap 变量,它与 va_arg 和 va_end 宏是一起使用的。last_arg 是最后一个传递给函数的已知的固定参数,即省略号之前的参数。 |
2 | type va_arg(va_list ap, type) 这个宏检索函数参数列表中类型为 type 的下一个参数。 |
3 | void va_end(va_list ap) 这个宏允许使用了 va_start 宏的带有可变参数的函数返回。如果在从函数返回之前没有调用 va_end,则结果为未定义。 |
stddef .h 头文件定义了各种变量类型和宏。这些定义中的大部分也出现在其它头文件中。
下面是头文件 stddef.h 中定义的变量类型:
序号 | 变量 & 描述 |
---|---|
1 | ptrdiff_t 这是有符号整数类型,它是两个指针相减的结果。 |
2 | size_t 这是无符号整数类型,它是 sizeof 关键字的结果。 |
3 | wchar_t 这是一个宽字符常量大小的整数类型。 |
下面是头文件 stddef.h 中定义的宏:
序号 | 宏 & 描述 |
---|---|
1 | NULL 这个宏是一个空指针常量的值。 |
2 | offsetof(type, member-designator) 这会生成一个类型为 size_t 的整型常量,它是一个结构成员相对于结构开头的字节偏移量。成员是由 member-designator 给定的,结构的名称是在 type 中给定的。 |
stdio .h 头文件定义了三个变量类型、一些宏和各种函数来执行输入和输出。
下面是头文件 stdio.h 中定义的变量类型:
序号 | 变量 & 描述 |
---|---|
1 | size_t 这是无符号整数类型,它是 sizeof 关键字的结果。 |
2 | FILE 这是一个适合存储文件流信息的对象类型。 |
3 | fpos_t 这是一个适合存储文件中任何位置的对象类型。 |
下面是头文件 stdio.h 中定义的宏:
序号 | 宏 & 描述 |
---|---|
1 | NULL 这个宏是一个空指针常量的值。 |
2 | _IOFBF、_IOLBF 和 _IONBF 这些宏扩展了带有特定值的整型常量表达式,并适用于 setvbuf 函数的第三个参数。 |
3 | BUFSIZ 这个宏是一个整数,该整数代表了 setbuf 函数使用的缓冲区大小。 |
4 | EOF 这个宏是一个表示已经到达文件结束的负整数。 |
5 | FOPEN_MAX 这个宏是一个整数,该整数代表了系统可以同时打开的文件数量。 |
6 | FILENAME_MAX 这个宏是一个整数,该整数代表了字符数组可以存储的文件名的最大长度。如果实现没有任何限制,则该值应为推荐的最大值。 |
7 | L_tmpnam 这个宏是一个整数,该整数代表了字符数组可以存储的由 tmpnam 函数创建的临时文件名的最大长度。 |
8 | SEEK_CUR、SEEK_END 和 SEEK_SET 这些宏是在 fseek 函数中使用,用于在一个文件中定位不同的位置。 |
9 | TMP_MAX 这个宏是 tmpnam 函数可生成的独特文件名的最大数量。 |
10 | stderr、stdin 和 stdout 这些宏是指向 FILE 类型的指针,分别对应于标准错误、标准输入和标准输出流。 |
下面是头文件 stdio.h 中定义的函数:
为了更好地理解函数,请按照下面的序列学习这些函数,因为第一个函数中创建的文件会在后续的函数中使用到。
序号 | 函数 & 描述 |
---|---|
1 | int fclose(FILE *stream) 关闭流 stream。刷新所有的缓冲区。 |
2 | void clearerr(FILE *stream) 清除给定流 stream 的文件结束和错误标识符。 |
3 | int feof(FILE *stream) 测试给定流 stream 的文件结束标识符。 |
4 | int ferror(FILE *stream) 测试给定流 stream 的错误标识符。 |
5 | int fflush(FILE *stream) 刷新流 stream 的输出缓冲区。 |
6 | int fgetpos(FILE *stream, fpos_t *pos) 获取流 stream 的当前文件位置,并把它写入到 pos。 |
7 | FILE *fopen(const char *filename, const char *mode) 使用给定的模式 mode 打开 filename 所指向的文件。 |
8 | size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream) 从给定流 stream 读取数据到 ptr 所指向的数组中。 |
9 | FILE *freopen(const char *filename, const char *mode, FILE *stream) 把一个新的文件名 filename 与给定的打开的流 stream 关联,同时关闭流中的旧文件。 |
10 | int fseek(FILE *stream, long int offset, int whence) 设置流 stream 的文件位置为给定的偏移 offset,参数 offset 意味着从给定的 whence 位置查找的字节数。 |
11 | int fsetpos(FILE *stream, const fpos_t *pos) 设置给定流 stream 的文件位置为给定的位置。参数 pos 是由函数 fgetpos 给定的位置。 |
12 | long int ftell(FILE *stream) 返回给定流 stream 的当前文件位置。 |
13 | size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream) 把 ptr 所指向的数组中的数据写入到给定流 stream 中。 |
14 | int remove(const char *filename) 删除给定的文件名 filename,以便它不再被访问。 |
15 | int rename(const char *old_filename, const char *new_filename) 把 old_filename 所指向的文件名改为 new_filename。 |
16 | void rewind(FILE *stream) 设置文件位置为给定流 stream 的文件的开头。 |
17 | void setbuf(FILE *stream, char *buffer) 定义流 stream 应如何缓冲。 |
18 | int setvbuf(FILE *stream, char *buffer, int mode, size_t size) 另一个定义流 stream 应如何缓冲的函数。 |
19 | FILE *tmpfile(void) 以二进制更新模式(wb+)创建临时文件。 |
20 | char *tmpnam(char *str) 生成并返回一个有效的临时文件名,该文件名之前是不存在的。 |
21 | int fprintf(FILE *stream, const char *format, ...) 发送格式化输出到流 stream 中。 |
22 | int printf(const char *format, ...) 发送格式化输出到标准输出 stdout。 |
23 | int sprintf(char *str, const char *format, ...) 发送格式化输出到字符串。 |
24 | int vfprintf(FILE *stream, const char *format, va_list arg) 使用参数列表发送格式化输出到流 stream 中。 |
25 | int vprintf(const char *format, va_list arg) 使用参数列表发送格式化输出到标准输出 stdout。 |
26 | int vsprintf(char *str, const char *format, va_list arg) 使用参数列表发送格式化输出到字符串。 |
27 | int fscanf(FILE *stream, const char *format, ...) 从流 stream 读取格式化输入。 |
28 | int scanf(const char *format, ...) 从标准输入 stdin 读取格式化输入。 |
29 | int sscanf(const char *str, const char *format, ...) 从字符串读取格式化输入。 |
30 | int fgetc(FILE *stream) 从指定的流 stream 获取下一个字符(一个无符号字符),并把位置标识符往前移动。 |
31 | char *fgets(char *str, int n, FILE *stream) 从指定的流 stream 读取一行,并把它存储在 str 所指向的字符串内。当读取 (n-1) 个字符时,或者读取到换行符时,或者到达文件末尾时,它会停止,具体视情况而定。 |
32 | int fputc(int char, FILE *stream) 把参数 char 指定的字符(一个无符号字符)写入到指定的流 stream 中,并把位置标识符往前移动。 |
33 | int fputs(const char *str, FILE *stream) 把字符串写入到指定的流 stream 中,但不包括空字符。 |
34 | int getc(FILE *stream) 从指定的流 stream 获取下一个字符(一个无符号字符),并把位置标识符往前移动。 |
35 | int getchar(void) 从标准输入 stdin 获取一个字符(一个无符号字符)。 |
36 | char *gets(char *str) 从标准输入 stdin 读取一行,并把它存储在 str 所指向的字符串中。当读取到换行符时,或者到达文件末尾时,它会停止,具体视情况而定。 |
37 | int putc(int char, FILE *stream) 把参数 char 指定的字符(一个无符号字符)写入到指定的流 stream 中,并把位置标识符往前移动。 |
38 | int putchar(int char) 把参数 char 指定的字符(一个无符号字符)写入到标准输出 stdout 中。 |
39 | int puts(const char *str) 把一个字符串写入到标准输出 stdout,直到空字符,但不包括空字符。换行符会被追加到输出中。 |
40 | int ungetc(int char, FILE *stream) 把字符 char(一个无符号字符)推入到指定的流 stream 中,以便它是下一个被读取到的字符。 |
41 | void perror(const char *str) 把一个描述性错误消息输出到标准错误 stderr。首先输出字符串 str,后跟一个冒号,然后是一个空格。 |
42 | int snprintf(char *str, size_t size, const char *format, ...) 格式字符串到 str 中。 |
stdlib .h 头文件定义了四个变量类型、一些宏和各种通用工具函数。
下面是头文件 stdlib.h 中定义的变量类型:
序号 | 变量 & 描述 |
---|---|
1 | size_t 这是无符号整数类型,它是 sizeof 关键字的结果。 |
2 | wchar_t 这是一个宽字符常量大小的整数类型。 |
3 | div_t 这是 div 函数返回的结构。 |
4 | ldiv_t 这是 ldiv 函数返回的结构。 |
下面是头文件 stdlib.h 中定义的宏:
序号 | 宏 & 描述 |
---|---|
1 | NULL 这个宏是一个空指针常量的值。 |
2 | EXIT_FAILURE 这是 exit 函数失败时要返回的值。 |
3 | EXIT_SUCCESS 这是 exit 函数成功时要返回的值。 |
4 | RAND_MAX 这个宏是 rand 函数返回的最大值。 |
5 | MB_CUR_MAX 这个宏表示在多字节字符集中的最大字符数,不能大于 MB_LEN_MAX。 |
下面是头文件 stdlib.h 中定义的函数:
序号 | 函数 & 描述 |
---|---|
1 | double atof(const char *str) 把参数 str 所指向的字符串转换为一个浮点数(类型为 double 型)。 |
2 | int atoi(const char *str) 把参数 str 所指向的字符串转换为一个整数(类型为 int 型)。 |
3 | long int atol(const char *str) 把参数 str 所指向的字符串转换为一个长整数(类型为 long int 型)。 |
4 | double strtod(const char *str, char **endptr) 把参数 str 所指向的字符串转换为一个浮点数(类型为 double 型)。 |
5 | long int strtol(const char *str, char **endptr, int base) 把参数 str 所指向的字符串转换为一个长整数(类型为 long int 型)。 |
6 | unsigned long int strtoul(const char *str, char **endptr, int base) 把参数 str 所指向的字符串转换为一个无符号长整数(类型为 unsigned long int 型)。 |
7 | void *calloc(size_t nitems, size_t size) 分配所需的内存空间,并返回一个指向它的指针。 |
8 | void free(void *ptr) 释放之前调用 calloc、malloc 或 realloc 所分配的内存空间。 |
9 | void *malloc(size_t size) 分配所需的内存空间,并返回一个指向它的指针。 |
10 | void *realloc(void *ptr, size_t size) 尝试重新调整之前调用 malloc 或 calloc 所分配的 ptr 所指向的内存块的大小。 |
11 | void abort(void) 使一个异常程序终止。 |
12 | int atexit(void (*func)(void)) 当程序正常终止时,调用指定的函数 func。 |
13 | void exit(int status) 使程序正常终止。 |
14 | char *getenv(const char *name) 搜索 name 所指向的环境字符串,并返回相关的值给字符串。 |
15 | int system(const char *string) 由 string 指定的命令传给要被命令处理器执行的主机环境。 |
16 | void *bsearch(const void *key, const void *base, size_t nitems, size_t size, int (*compar)(const void *, const void *)) 执行二分查找。 |
17 | void qsort(void *base, size_t nitems, size_t size, int (*compar)(const void *, const void*)) 数组排序。 |
18 | int abs(int x) 返回 x 的绝对值。 |
19 | div_t div(int numer, int denom) 分子除以分母。 |
20 | long int labs(long int x) 返回 x 的绝对值。 |
21 | ldiv_t ldiv(long int numer, long int denom) 分子除以分母。 |
22 | int rand(void) 返回一个范围在 0 到 RAND_MAX 之间的伪随机数。 |
23 | void srand(unsigned int seed) 该函数播种由函数 rand 使用的随机数发生器。 |
24 | int mblen(const char *str, size_t n) 返回参数 str 所指向的多字节字符的长度。 |
25 | size_t mbstowcs(schar_t *pwcs, const char *str, size_t n) 把参数 str 所指向的多字节字符的字符串转换为参数 pwcs 所指向的数组。 |
26 | int mbtowc(whcar_t *pwc, const char *str, size_t n) 检查参数 str 所指向的多字节字符。 |
27 | size_t wcstombs(char *str, const wchar_t *pwcs, size_t n) 把数组 pwcs 中存储的编码转换为多字节字符,并把它们存储在字符串 str 中。 |
28 | int wctomb(char *str, wchar_t wchar) 检查对应于参数 wchar 所给出的多字节字符的编码。 |
string .h 头文件定义了一个变量类型、一个宏和各种操作字符数组的函数。
下面是头文件 string.h 中定义的变量类型:
序号 | 变量 & 描述 |
---|---|
1 | size_t 这是无符号整数类型,它是 sizeof 关键字的结果。 |
下面是头文件 string.h 中定义的宏:
序号 | 宏 & 描述 |
---|---|
1 | NULL 这个宏是一个空指针常量的值。 |
下面是头文件 string.h 中定义的函数:
序号 | 函数 & 描述 |
---|---|
1 | void *memchr(const void *str, int c, size_t n) 在参数 str 所指向的字符串的前 n 个字节中搜索第一次出现字符 c(一个无符号字符)的位置。 |
2 | int memcmp(const void *str1, const void *str2, size_t n) 把 str1 和 str2 的前 n 个字节进行比较。 |
3 | void *memcpy(void *dest, const void *src, size_t n) 从 src 复制 n 个字符到 dest。 |
4 | void *memmove(void *dest, const void *src, size_t n) 另一个用于从 src 复制 n 个字符到 dest 的函数。 |
5 | void *memset(void *str, int c, size_t n) 复制字符 c(一个无符号字符)到参数 str 所指向的字符串的前 n 个字符。 |
6 | char *strcat(char *dest, const char *src) 把 src 所指向的字符串追加到 dest 所指向的字符串的结尾。 |
7 | char *strncat(char *dest, const char *src, size_t n) 把 src 所指向的字符串追加到 dest 所指向的字符串的结尾,直到 n 字符长度为止。 |
8 | char *strchr(const char *str, int c) 在参数 str 所指向的字符串中搜索第一次出现字符 c(一个无符号字符)的位置。 |
9 | int strcmp(const char *str1, const char *str2) 把 str1 所指向的字符串和 str2 所指向的字符串进行比较。 |
10 | int strncmp(const char *str1, const char *str2, size_t n) 把 str1 和 str2 进行比较,最多比较前 n 个字节。 |
11 | int strcoll(const char *str1, const char *str2) 把 str1 和 str2 进行比较,结果取决于 LC_COLLATE 的位置设置。 |
12 | char *strcpy(char *dest, const char *src) 把 src 所指向的字符串复制到 dest。 |
13 | char *strncpy(char *dest, const char *src, size_t n) 把 src 所指向的字符串复制到 dest,最多复制 n 个字符。 |
14 | size_t strcspn(const char *str1, const char *str2) 检索字符串 str1 开头连续有几个字符都不含字符串 str2 中的字符。 |
15 | char *strerror(int errnum) 从内部数组中搜索错误号 errnum,并返回一个指向错误消息字符串的指针。 |
16 | size_t strlen(const char *str) 计算字符串 str 的长度,直到空结束字符,但不包括空结束字符。 |
17 | char *strpbrk(const char *str1, const char *str2) 检索字符串 str1 中第一个匹配字符串 str2 中字符的字符,不包含空结束字符。也就是说,依次检验字符串 str1 中的字符,当被检验字符在字符串 str2 中也包含时,则停止检验,并返回该字符位置。 |
18 | char *strrchr(const char *str, int c) 在参数 str 所指向的字符串中搜索最后一次出现字符 c(一个无符号字符)的位置。 |
19 | size_t strspn(const char *str1, const char *str2) 检索字符串 str1 中第一个不在字符串 str2 中出现的字符下标。 |
20 | char *strstr(const char *haystack, const char *needle) 在字符串 haystack 中查找第一次出现字符串 needle(不包含空结束字符)的位置。 |
21 | char *strtok(char *str, const char *delim) 分解字符串 str 为一组字符串,delim 为分隔符。 |
22 | size_t strxfrm(char *dest, const char *src, size_t n) 根据程序当前的区域选项中的 LC_COLLATE 来转换字符串 src 的前 n 个字符,并把它们放置在字符串 dest 中。 |
time.h 头文件定义了四个变量类型、两个宏和各种操作日期和时间的函数。
下面是头文件 time.h 中定义的变量类型:
序号 | 变量 & 描述 |
---|---|
1 | size_t 是无符号整数类型,它是 sizeof 关键字的结果。 |
2 | clock_t 这是一个适合存储处理器时间的类型。 |
3 | time_t is 这是一个适合存储日历时间的类型。 |
4 | struct tm 这是一个用来保存时间和日期的结构。 |
tm 结构的定义如下:
struct tm {
int tm_sec; /* 秒,范围从 0 到 59 */
int tm_min; /* 分,范围从 0 到 59 */
int tm_hour; /* 小时,范围从 0 到 23 */
int tm_mday; /* 一月中的第几天,范围从 1 到 31 */
int tm_mon; /* 月,范围从 0 到 11 */
int tm_year; /* 自 1900 年起的年数 */
int tm_wday; /* 一周中的第几天,范围从 0 到 6 */
int tm_yday; /* 一年中的第几天,范围从 0 到 365 */
int tm_isdst; /* 夏令时 */
};
下面是头文件 time.h 中定义的宏:
序号 | 宏 & 描述 |
---|---|
1 | NULL 这个宏是一个空指针常量的值。 |
2 | CLOCKS_PER_SEC 这个宏表示每秒的处理器时钟个数。 |
下面是头文件 time.h 中定义的函数:
序号 | 函数 & 描述 |
---|---|
1 | char *asctime(const struct tm *timeptr) 返回一个指向字符串的指针,它代表了结构 timeptr 的日期和时间。 |
2 | clock_t clock(void) 返回程序执行起(一般为程序的开头),处理器时钟所使用的时间。 |
3 | char *ctime(const time_t *timer) 返回一个表示当地时间的字符串,当地时间是基于参数 timer。 |
4 | double difftime(time_t time1, time_t time2) 返回 time1 和 time2 之间相差的秒数 (time1-time2)。 |
5 | struct tm *gmtime(const time_t *timer) timer 的值被分解为 tm 结构,并用协调世界时(UTC)也被称为格林尼治标准时间(GMT)表示。 |
6 | struct tm *localtime(const time_t *timer) timer 的值被分解为 tm 结构,并用本地时区表示。 |
7 | time_t mktime(struct tm *timeptr) 把 timeptr 所指向的结构转换为一个依据本地时区的 time_t 值。 |
8 | size_t strftime(char *str, size_t maxsize, const char *format, const struct tm *timeptr) 根据 format 中定义的格式化规则,格式化结构 timeptr 表示的时间,并把它存储在 str 中。 |
9 | time_t time(time_t *timer) 计算当前日历时间,并把它编码成 time_t 格式。 |
1、C 语言实例 - 输出 "Hello, World!"
2、 C 语言实例 - 输出整数
3、 C 语言实例 - 输出单个字符
4、 C 语言实例 - 输出浮点数
5、 C 语言实例 - 输出双精度数
6、 C 语言实例 - 两个数字相加
7、 C 语言实例 - 两个浮点数相乘
8、 C 语言实例 - 字符转 ASCII 码
9、 C 语言实例 - 两数相除
10、 C 语言实例 - 数值比较
11、 C 语言实例 - 计算 int, float, double 和 char 字节大小
12、 C 语言实例 - 交换两个数的值
13、 C 语言实例 - 判断奇数/偶数
14、 C 语言实例 - 循环区间范围内的奇数/偶数
15、 C 语言实例 - 判断元音/辅音
16、 C 语言实例 - 判断三个数中的最大数
17、 C 语言实例 - 一元二次方程
18、 C 语言实例 - 判断闰年
19、 C 语言实例 - 判断正数/负数/零
20、 C 语言实例 - 判断字母
21、 C 语言实例 - 计算自然数的和
22、 C 语言实例 - 输出九九乘法口诀表
23、 C 语言实例 - 斐波那契数列
24、 C 语言实例 - 求两数的最大公约数
25、 C 语言实例 - 求两数最小公倍数
26、 C 语言实例 - 阶乘
27、 C 语言实例 - 循环输出26个字母
28、 C 语言实例 - 判断数字为几位数
29、 C 语言实例 - 计算一个数的 n 次方
30、 C 语言实例 - 判断回文数
31、 C 语言实例 - 判断素数
32、 C 语言实例 - 判断Armstrong数(阿姆斯壮数)
33、 C 语言实例 – 求一个整数的所有因数
34、 C 语言实例 - 创建各类三角形图案
35、 C 语言实例 - 表格形式输出数据
36、 C 语言实例 - 实现简单的计算器
37、 C 语言实例 - 计算一个数是否可为两个素数之和
38、 C 语言实例 - 二进制与十进制相互转换
39、 C 语言实例 - 八进制与十进制相互转换
40、 C 语言实例 - 八进制与二进制相互转换
41、 C 语言实例 - 字符串翻转
42、 C 语言实例 - 计算数组元素平均值
43、 C 语言实例 - 输出数组
44、 C 语言实例 - 计算数组元素之和
45、 C 语言实例 - 查找数组中最大的元素值
46、 C 语言实例 - 查找数组中最小的元素
47、 C 语言实例 - 数组拆分与合并
48、 C 语言实例 - 数组拷贝
49、 C 语言实例 - 计算标准偏差
50、 C 语言实例 - 两个矩阵相加
51、 C 语言实例 – 矩阵转换
52、 C 语言实例 - 使用指针访问数组元素
53、 C 语言实例 - 使用引用循环替换数值
54、 C 语言实例 - 判断最大值
55、 C 语言实例 - 删除字符串中的特殊字符
56、 C 语言实例 – 连接字符串
57、 C 语言实例 – 计算字符串长度
58、 C 语言实例 – 查找字符在字符串中出现的次数
59、 C 语言实例 – 字符串中各种字符计算
60、 C 语言实例 - 字符串复制
61、 C 语言实例 - 字符串排序
62、 C 语言实例 - 使用结构体(struct)
63、 C 语言实例 - 复数相加
64、 C 语言实例 - 计算两个时间段的差值
65、 C 语言实例 - 将字符串写入文件
66、 C 语言实例 - 从文件中读取一行
67、 C 语言实例 - 输出当前文件执行代码
68、C 语言实例 - 约瑟夫生者死者小游戏
69、C 语言实例 - 五人分鱼