【使用OpenCV进行目标分割与计数的代码实例详解】

文章目录

    • 概要
    • 实例一:硬币分割计数
    • 实例二:玉米粒分割计数

概要

在当今数字图像处理领域,图像分割技术是一项至关重要的任务。图像分割旨在将图像中的不同目标或区域准确地分开,为计算机视觉、图像识别和机器学习等领域提供了坚实的基础。在图像分割的广泛应用中,二值化、形态学预处理、距离变换以及分水岭算法等技术被广泛探讨和应用。

首先,二值化技术通过将灰度图像转化为黑白图像,为分割算法提供了清晰的背景和前景。其次,形态学预处理通过腐蚀、膨胀等操作,清除噪声、连接物体,为后续处理提供了更加准确的图像。接着,距离变换技术能够量化地描述图像中各个像素点与目标的距离关系,为图像分析提供了重要依据。最后,分水岭算法则是一种高度智能的分割技术,通过模拟水流形成分割边界,解决了复杂目标重叠和交叉的挑战。

实例一:硬币分割计数

导入必要的库:

from skimage.feature import peak_local_max
from skimage.morphology import watershed
from scipy import ndimage
import numpy as np
import argparse
import imutils
import cv2

加载并预处理图像:

image = cv2.imread("1.jpg")
shifted = cv2.pyrMeanShiftFiltering(image, 21, 51)
cv2.imshow("Input", image)

这里使用了均值迁移滤波(Mean Shift Filtering)来平滑图像,使得图像中的区域更加集中,有助于后续的阈值处理。

将图像转换为灰度图,然后进行二值化处理:

gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("Thresh", thresh)

这里使用了Otsu的阈值处理方法,将灰度图转换为二值图。

计算距离变换并找到峰值:

D = ndimage.distance_transform_edt(thresh)
localMax = peak_local_max(D, indices=False, min_distance=10, labels=thresh)

这一步计算了二值化图像的距离变换(Euclidean Distance Transform),然后找到了距离图中的峰值点。

应用分水岭算法进行图像分割:

markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
labels = watershed(-D, markers, mask=thresh)

这里使用了分水岭算法,通过标记(markers)和掩码(mask)将图像分割成不同的区域。

分割结果的后处理:

for label in np.unique(labels):
    # if the label is zero, we are examining the 'background'
  # so simply ignore it
  if label == 0:
    continue
 
  # otherwise, allocate memory for the label region and draw
  # it on the mask
  mask = np.zeros(gray.shape, dtype="uint8")
  mask[labels == label] = 255
 
  # detect contours in the mask and grab the largest one
  cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
    cv2.CHAIN_APPROX_SIMPLE)
  cnts = imutils.grab_contours(cnts)
  c = max(cnts, key=cv2.contourArea)
 
  # draw a circle enclosing the object
  ((x, y), r) = cv2.minEnclosingCircle(c)
  cv2.circle(image, (int(x), int(y)), int(r), (0, 255, 0), 2)
  cv2.putText(image, "{}".format(label), (int(x) - 10, int(y)),
    cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

在这个循环中,对分水岭算法得到的每个区域进行处理,找到每个区域的轮廓,然后用圆圈标注出物体的轮廓,并在标注中显示区域的标签。

显示最终的分割结果:

 cv2.imshow("Output", image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
最终,代码将显示带有分割结果的原始图像。

这段代码演示了一个完整的图像分割流程,包括图像预处理、距离变换、分水岭算法的应用,以及对分割结果的后处理和可视化。
全部代码:

# import the necessary packages
from skimage.feature import peak_local_max
from scipy import ndimage
import numpy as np
import argparse
import imutils
import cv2
from skimage.morphology import watershed
# load the image and perform pyramid mean shift filtering
# to aid the thresholding step
image = cv2.imread("img.png")
shifted = cv2.pyrMeanShiftFiltering(image, 21, 51)
cv2.imshow("Input", image)

# convert the mean shift image to grayscale, then apply
# Otsu's thresholding
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255,
                       cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("Thresh", thresh)

# compute the exact Euclidean distance from every binary
# pixel to the nearest zero pixel, then find peaks in this
# distance map
D = ndimage.distance_transform_edt(thresh)
localMax = peak_local_max(D, indices=False, min_distance=10,
                          labels=thresh)

# perform a connected component analysis on the local peaks,
# using 8-connectivity, then appy the Watershed algorithm
markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
labels = watershed(-D, markers, mask=thresh)
print("[INFO] {} unique segments found".format(len(np.unique(labels)) - 1))

# loop over the unique labels returned by the Watershed
# algorithm
for label in np.unique(labels):
    # if the label is zero, we are examining the 'background'
    # so simply ignore it
    if label == 0:
        continue

    # otherwise, allocate memory for the label region and draw
    # it on the mask
    mask = np.zeros(gray.shape, dtype="uint8")
    mask[labels == label] = 255

    # detect contours in the mask and grab the largest one
    cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
                            cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)
    c = max(cnts, key=cv2.contourArea)

    # draw a circle enclosing the object
    ((x, y), r) = cv2.minEnclosingCircle(c)
    cv2.circle(image, (int(x), int(y)), int(r), (0, 255, 0), 2)
    cv2.putText(image, "{}".format(label), (int(x) - 10, int(y)),
                cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

使用时候将图片放在同级目录,修改文件名字即可:
img.png,11行修改即可。
硬币图片自己随便找,复制图像截屏使用都可以:
【使用OpenCV进行目标分割与计数的代码实例详解】_第1张图片

【使用OpenCV进行目标分割与计数的代码实例详解】_第2张图片

使用结果:
三张图片:

注意:
导入库函数的部分,这个skimage库函数的没有,需要下载全部名字。
在环境下载库函数

pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple

如果导入成功,但是运行报错:

D:\anaconda\envs\yolov5\python.exe E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\光流\11.py 
Traceback (most recent call last):
  File "E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\光流\11.py", line 26, in <module>
    localMax = peak_local_max(D, indices=False, min_distance=10,
TypeError: peak_local_max() got an unexpected keyword argument 'indices'

Process finished with exit code 1

说明使用的peak_local_max函数的参数中含有indices,但该函数在较新的版本中已经没有该参数了。

这可能是由于scikit-image库版本过高导致的。检查scikit-image库版本是否为0.17.2或更高版本,如果是,可以将该库回退到0.16.2版本:

pip install scikit-image==0.16.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

如果依然想要使用最新的scikit-image库,将indices参数删除并改用默认值即可,例如:

localMax = peak_local_max(D, min_distance=10,
                          threshold_abs=threshold)

这样可以避免indices参数引起的错误。

实例二:玉米粒分割计数

导入必要的库:

import numpy as np
import cv2
from matplotlib import pyplot as plt

读取图像并进行灰度化处理:

img = cv2.imread('5.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

二值化处理:

ret, thresh = cv2.threshold(gray, 245, 255, cv2.THRESH_BINARY)

这一步将灰度图像转换为二值图像,其中灰度值大于等于245的像素被设为255(白色),小于245的像素被设为0(黑色)。

图像膨胀:

k = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 13))
dilate = cv2.dilate(thresh, k, iterations=3)

通过膨胀操作,将二值图像中的物体区域扩大,便于后续处理。

距离变换:

cv2.bitwise_not(dilate, dilate)
dist_transform = cv2.distanceTransform(dilate, cv2.DIST_L2, 3)
dist = cv2.normalize(dist_transform, dist_transform, 0, 1.0, cv2.NORM_MINMAX)

这一步计算了图像中每个像素点到最近的背景像素的距离,得到了距离变换图。在这个图像中,物体的中心部分距离背景较远,而边缘部分距离背景较近。

二值化距离变换图:

dist = cv2.convertScaleAbs(dist)
ret2, morph = cv2.threshold(dist, 0.99, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

这一步将距离变换图二值化,得到了分割后的图像。

形态学开运算:

k2 = cv2.getStructuringElement(cv2.MORPH_RECT, (11, 5))
sure_fg = cv2.morphologyEx(morph, cv2.MORPH_OPEN, k2, iterations=1)

这一步通过形态学开运算去除小的噪点,保留大的物体区域。

寻找轮廓并标注:

thresh, contours, hierarchy = cv2.findContours(sure_fg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for i in range(0, len(contours)):
    (x, y, w, h) = cv2.boundingRect(contours[i])
    cv2.circle(img, (x + int(w / 2), y + int(h / 2)), 20, (0, 0, 255), -1, cv2.LINE_AA)
    cv2.putText(img, str(i + 1), (x + int(w / 2) - 15, y + int(h / 2) + 5), font, 0.8, (0, 255, 0), 2)

这一步使用cv2.findContours函数找到图像中的轮廓,然后绘制圆圈和文本标注在图像上,表示找到的物体区域。

显示和保存结果:

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

最后,通过cv2.imshow显示处理后的图像。

全部代码:

import numpy as np
import cv2
from matplotlib import pyplot as plt

font = cv2.FONT_HERSHEY_SIMPLEX

img = cv2.imread('img_2.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 245, 255, cv2.THRESH_BINARY)
cv2.imshow("threshold", thresh)

k = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 13))
dilate = cv2.dilate(thresh, k, iterations=3)
cv2.imshow("dilate", dilate)

cv2.bitwise_not(dilate, dilate)
dist_transform = cv2.distanceTransform(dilate, cv2.DIST_L2, 3)
dist = cv2.normalize(dist_transform, dist_transform, 0, 1.0, cv2.NORM_MINMAX)
cv2.imshow("distance", dist)
cv2.imwrite("dis.jpg", dist)

# dist = np.uint8(dist)
dist = cv2.convertScaleAbs(dist)
ret2, morph = cv2.threshold(dist, 0.99, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# ret2, morph = cv2.threshold(dist,0,255,cv2.THRESH_BINARY_INV)
cv2.imshow("morph", morph)

k2 = cv2.getStructuringElement(cv2.MORPH_RECT, (11, 5))
sure_fg = cv2.morphologyEx(morph, cv2.MORPH_OPEN, k2, iterations=1)  # 形态开运算

cv2.imshow("result", sure_fg)

thresh, contours, hierarchy = cv2.findContours(sure_fg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for i in range(0, len(contours)):
    (x, y, w, h) = cv2.boundingRect(contours[i])
    # cv2.drawContours(img,contours,i,(0,255,0),5)
    cv2.circle(img, (x + int(w / 2), y + int(h / 2)), 20, (0, 0, 255), -1, cv2.LINE_AA)
    cv2.putText(img, str(i + 1), (x + int(w / 2) - 15, y + int(h / 2) + 5), font, 0.8, (0, 255, 0), 2)

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图:
【使用OpenCV进行目标分割与计数的代码实例详解】_第3张图片
结果:

【使用OpenCV进行目标分割与计数的代码实例详解】_第4张图片
opencv版本不适配可能报错:

D:\anaconda\envs\yolov5\python.exe E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\光流\22.py 
Traceback (most recent call last):
  File "E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\光流\22.py", line 33, in <module>
    thresh, contours, hierarchy = cv2.findContours(sure_fg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
ValueError: not enough values to unpack (expected 3, got 2)

Process finished with exit code 1

解决办法:
降低版本参考:
降低版本参考:
替换:

contours, _ = cv2.findContours(sure_fg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

替换:在这里插入图片描述

你可能感兴趣的:(#,学习笔记,python深度学习,人工智能,opencv,计算机视觉,人工智能,python,数据分析,信息可视化)