const MAX_ID: usize = usize::MAX / 2;
fn main() {
println!("用户ID允许的最大值是{}",MAX_ID);
}
static mut REQUEST_RECV: usize = 0;
fn main() {
unsafe {
REQUEST_RECV += 1;
assert_eq!(REQUEST_RECV, 1);
}
}
Rust 要求必须使用unsafe语句块才能访问和修改static变量,因为这种使用方式往往并不安全,其实编译器是对的,当在多线程中同时去修改时,会不可避免的遇到脏数据。
只有在同一线程内或者不在乎数据的准确性时,才应该使用全局静态变量。
想要全局计数器、状态控制等功能,又想要线程安全的实现,原子类型是非常好的办法。
use std::sync::atomic::{AtomicUsize, Ordering};
static REQUEST_RECV: AtomicUsize = AtomicUsize::new(0);
fn main() {
for _ in 0..100 {
REQUEST_RECV.fetch_add(1, Ordering::Relaxed);
}
println!("当前用户请求数{:?}",REQUEST_RECV);
}
静态初始化有一个致命的问题:无法用函数进行静态初始化,例如你如果想声明一个全局的Mutex锁:
use std::sync::Mutex;
static NAMES: Mutex = Mutex::new(String::from("Sunface, Jack, Allen"));
fn main() {
let v = NAMES.lock().unwrap();
println!("{}",v);
}
运行后报错如下:
error[E0015]: calls in statics are limited to constant functions, tuple structs and tuple variants
--> src/main.rs:3:42
|
3 | static NAMES: Mutex<String> = Mutex::new(String::from("sunface"));
lazy_static是社区提供的非常强大的宏,用于懒初始化静态变量,之前的静态变量都是在编译期初始化的,因此无法使用函数调用进行赋值,而lazy_static允许我们在运行期初始化静态变量!
use std::sync::Mutex;
use lazy_static::lazy_static;
lazy_static! {
static ref NAMES: Mutex = Mutex::new(String::from("Sunface, Jack, Allen"));
}
fn main() {
let mut v = NAMES.lock().unwrap();
v.push_str(", Myth");
println!("{}",v);
}
Rust为我们提供了Box::leak方法,它可以将一个变量从内存中泄漏,然后将其变为’static生命周期,最终该变量将和程序活得一样久,因此可以赋值给全局静态变量CONFIG。
#[derive(Debug)]
struct Config {
a: String,
b: String
}
static mut CONFIG: Option<&mut Config> = None;
fn main() {
let c = Box::new(Config {
a: "A".to_string(),
b: "B".to_string(),
});
unsafe {
// 将`c`从内存中泄漏,变成`'static`生命周期
CONFIG = Some(Box::leak(c));
println!("{:?}", CONFIG);
}
}
#[derive(Debug)]
struct Config {
a: String,
b: String,
}
static mut CONFIG: Option<&mut Config> = None;
fn init() -> Option<&'static mut Config> {
Some(&mut Config {
a: "A".to_string(),
b: "B".to_string(),
})
}
fn main() {
unsafe {
CONFIG = init();
println!("{:?}", CONFIG)
}
}
在 Rust 标准库中提供了实验性的 lazy::OnceCell 和 lazy::SyncOnceCell (在 Rust 1.70.0版本及以上的标准库中,替换为稳定的 cell::OnceCell 和 sync::OnceLock )两种 Cell ,前者用于单线程,后者用于多线程,它们用来存储堆上的信息,并且具有最 多只能赋值一次的特性。 如实现一个多线程的日志组件 Logger:
// 低于Rust 1.70版本中, OnceCell 和 SyncOnceCell 的API为实验性的 ,
// 需启用特性 `#![feature(once_cell)]`。
// #![feature(once_cell)]
// use std::{lazy::SyncOnceCell, thread};
// Rust 1.70版本以上,
use std::{sync::OnceLock, thread};
fn main() {
// 子线程中调用
let handle = thread::spawn(|| {
let logger = Logger::global();
logger.log("thread message".to_string());
});
// 主线程调用
let logger = Logger::global();
logger.log("some message".to_string());
let logger2 = Logger::global();
logger2.log("other message".to_string());
handle.join().unwrap();
}
#[derive(Debug)]
struct Logger;
// 低于Rust 1.70版本
// static LOGGER: SyncOnceCell = SyncOnceCell::new();
// Rust 1.70版本以上
static LOGGER: OnceLock = OnceLock::new();
impl Logger {
fn global() -> &'static Logger {
// 获取或初始化 Logger
LOGGER.get_or_init(|| {
println!("Logger is being created..."); // 初始化打印
Logger
})
}
fn log(&self, message: String) {
println!("{}", message)
}
}
以上代码我们声明了一个 global() 关联函数,并在其内部调用 get_or_init 进行初始化 Logger,之后在不同线程上多次调用 Logger::global() 获取其实例:
Logger is being created…
some message
other message
thread message
可以看到,Logger is being created… 在多个线程中使用也只被打印了一次。