L2-032 彩虹瓶

彩虹瓶的制作过程(并不)是这样的:先把一大批空瓶铺放在装填场地上,然后按照一定的顺序将每种颜色的小球均匀撒到这批瓶子里。

假设彩虹瓶里要按顺序装 N 种颜色的小球(不妨将顺序就编号为 1 到 N)。现在工厂里有每种颜色的小球各一箱,工人需要一箱一箱地将小球从工厂里搬到装填场地。如果搬来的这箱小球正好是可以装填的颜色,就直接拆箱装填;如果不是,就把箱子先码放在一个临时货架上,码放的方法就是一箱一箱堆上去。当一种颜色装填完以后,先看看货架顶端的一箱是不是下一个要装填的颜色,如果是就取下来装填,否则去工厂里再搬一箱过来。

如果工厂里发货的顺序比较好,工人就可以顺利地完成装填。例如要按顺序装填 7 种颜色,工厂按照 7、6、1、3、2、5、4 这个顺序发货,则工人先拿到 7、6 两种不能装填的颜色,将其按照 7 在下、6 在上的顺序堆在货架上;拿到 1 时可以直接装填;拿到 3 时又得临时码放在 6 号颜色箱上;拿到 2 时可以直接装填;随后从货架顶取下 3 进行装填;然后拿到 5,临时码放到 6 上面;最后取了 4 号颜色直接装填;剩下的工作就是顺序从货架上取下 5、6、7 依次装填。

但如果工厂按照 3、1、5、4、2、6、7 这个顺序发货,工人就必须要愤怒地折腾货架了,因为装填完 2 号颜色以后,不把货架上的多个箱子搬下来就拿不到 3 号箱,就不可能顺利完成任务。

另外,货架的容量有限,如果要堆积的货物超过容量,工人也没办法顺利完成任务。例如工厂按照 7、6、5、4、3、2、1 这个顺序发货,如果货架够高,能码放 6 只箱子,那还是可以顺利完工的;但如果货架只能码放 5 只箱子,工人就又要愤怒了……

本题就请你判断一下,工厂的发货顺序能否让工人顺利完成任务。

输入格式:

输入首先在第一行给出 3 个正整数,分别是彩虹瓶的颜色数量 N(1

随后 K 行,每行给出 N 个数字,是 1 到N 的一个排列,对应工厂的发货顺序。

一行中的数字都以空格分隔。

输出格式:

对每个发货顺序,如果工人可以愉快完工,就在一行中输出 YES;否则输出 NO

输入样例:

7 5 3
7 6 1 3 2 5 4
3 1 5 4 2 6 7
7 6 5 4 3 2 1

输出样例:

YES
NO
NO
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
#define M 1000
int n, m, k;

int main() {
	cin >> n >> m >> k;
	for (int i = 0; i < k; i++) {
		int flag = 0, x = 1;
		stack sta;
		for (int j = 1, a; j <= n; j++) {
			cin >> a;
			if (x != a) {
				if (!sta.empty() && sta.top() < a) flag = 1;
				sta.push(a);
				if (sta.size() > m) flag = 1;
			}
			else {
				x += 1;
				while (!sta.empty() && sta.top() == x) {
					sta.pop();
					x += 1;
				}
			}
		}
		if (flag) cout << "NO" << endl;
		else cout << "YES" << endl;
	}
	return 0;
}

 

你可能感兴趣的:(算法题,c++,算法)