Spark操作dataFrame进行写入mysql,自定义sql的方式

业务场景:

  现在项目中需要通过对spark对原始数据进行计算,然后将计算结果写入到mysql中,但是在写入的时候有个限制:

  1、mysql中的目标表事先已经存在,并且当中存在主键,自增长的键id

  2、在进行将dataFrame写入表的时候,id字段不允许手动写入,因为其实自增长的

要求:

  1、写入数据库的时候,需要指定字段写入,也就是说,只指定部分字段写入

  2、在写入数据库的时候,对于操作主键相同的记录要实现更新操作,非插入操作

分析:

  spark本身提供了对dataframe的写入数据库的操作,即:

/**
 * SaveMode is used to specify the expected behavior of saving a DataFrame to a data source.
 *
 * @since 1.3.0
 */
public enum SaveMode {
  /**
   * Append mode means that when saving a DataFrame to a data source, if data/table already exists,
   * contents of the DataFrame are expected to be appended to existing data.
   *
   * @since 1.3.0
   */
  Append,
  /**
   * Overwrite mode means that when saving a DataFrame to a data source,
   * if data/table already exists, existing data is expected to be overwritten by the contents of
   * the DataFrame.
   *
   * @since 1.3.0
   */
  Overwrite,
  /**
   * ErrorIfExists mode means that when saving a DataFrame to a data source, if data already exists,
   * an exception is expected to be thrown.
   *
   * @since 1.3.0
   */
  ErrorIfExists,
  /**
   * Ignore mode means that when saving a DataFrame to a data source, if data already exists,
   * the save operation is expected to not save the contents of the DataFrame and to not
   * change the existing data.
   *
   * @since 1.3.0
   */
  Ignore
}

  但是,显然这种方式写入的时候,需要我们的dataFrame中的每个字段都需要对mysql目标表中相对应,在写入的时候需要全部字段都写入,这是种方式简单,但是这不符合我们的业务需求,所以我们需要换一种思路,也就是说,如果我们能够通过自定义insert语句的方式,也就是说通过jdbc的方式进行写入数据,那就更好了。这样也更符合我们的业务需求。

具体实现(开发环境:IDEA):

   实现方式:通过c3p0连接池的方式进行数据的写入,这样我们就可以直接通过自己拼接sql,来实现我们需要插入数据库的指定的字段值,当然这种方式实现起来也比较繁琐。

第一步:

  我们需要先导入响应的依赖包:

sbt项目导入方式:

Spark操作dataFrame进行写入mysql,自定义sql的方式_第1张图片

  打开build.sbt文件

Spark操作dataFrame进行写入mysql,自定义sql的方式_第2张图片

在红色框出进行添加即可

maven项目导入方式:

       
            mysql
            mysql-connector-java
            6.0.6
        
        
            com.mchange
            c3p0
            0.9.5
        

我习惯与将关于数据库操作的几个库类放到单独的一个BDUtils包中

第一步:定义读取配置文件的类

package cn.com.xxx.audit.DBUtils

import java.util.Properties

object PropertiyUtils {
  def getFileProperties(fileName: String, propertityKey: String): String = {
    val result = this.getClass.getClassLoader.getResourceAsStream(fileName)
    val prop = new Properties()
    prop.load(result)
    prop.getProperty(propertityKey)
  }
}

第二步:定义一个配置文件(db.properties),将该文件放在resource目录中,并且内容使用"="进行连接

  Spark操作dataFrame进行写入mysql,自定义sql的方式_第3张图片

  db.propreties
mysql.jdbc.url=jdbc:mysql://localhost:3306/test?serverTimezone=UTC
mysql.jdbc.host=127.0.0.1
mysql.jdbc.port=3306
mysql.jdbc.user=root
mysql.jdbc.password=123456
mysql.pool.jdbc.minPoolSize=20
mysql.pool.jdbc.maxPoolSize=50
mysql.pool.jdbc.acquireIncrement=10
mysql.pool.jdbc.maxStatements=50
mysql.driver=com.mysql.jdbc.Driver

 第三步:定义一个连接池的类,负责获取配置文件,并创建数据库连接池 

package cn.com.xxx.audit.DBUtils

import java.sql.Connection

import com.mchange.v2.c3p0.ComboPooledDataSource

class MySqlPool extends Serializable {
  private val cpds: ComboPooledDataSource = new ComboPooledDataSource(true)
  try {
    cpds.setJdbcUrl(PropertiyUtils.getFileProperties("db.properties", "mysql.jdbc.url"))
    cpds.setDriverClass(PropertiyUtils.getFileProperties("db.properties", "mysql.driver"))
    cpds.setUser(PropertiyUtils.getFileProperties("db.properties", "mysql.jdbc.user"))
    cpds.setPassword(PropertiyUtils.getFileProperties("db.properties", "mysql.jdbc.password"))
    cpds.setMinPoolSize(PropertiyUtils.getFileProperties("db.properties", "mysql.pool.jdbc.minPoolSize").toInt)
    cpds.setMaxPoolSize(PropertiyUtils.getFileProperties("db.properties", "mysql.pool.jdbc.maxPoolSize").toInt)
    cpds.setAcquireIncrement(PropertiyUtils.getFileProperties("db.properties", "mysql.pool.jdbc.acquireIncrement").toInt)
    cpds.setMaxStatements(PropertiyUtils.getFileProperties("db.properties", "mysql.pool.jdbc.maxStatements").toInt)
  } catch {
    case e: Exception => e.printStackTrace()
  }

  def getConnection: Connection = {
    try {
      cpds.getConnection()
    } catch {
      case ex: Exception =>
        ex.printStackTrace()
        null
    }
  }

  def close() = {
    try {
      cpds.close()
    } catch {
      case ex: Exception =>
        ex.printStackTrace()
    }
  }
}

  第四步:创建连接池管理器对象,用来获取数据库连接

package cn.com.winner.audit.DBUtils

object MySqlPoolManager {
  var mysqlManager: MySqlPool = _

  def getMysqlManager: MySqlPool = {
    synchronized {
      if (mysqlManager == null) {
        mysqlManager = new MySqlPool
      }
    }
    mysqlManager
  }
}

  第五步:对数据库的操作对象

package cn.com.winner.audit.DBUtils

import java.sql.{Date, Timestamp}
import java.util.Properties

import org.apache.log4j.Logger
import org.apache.spark.sql.types._
import org.apache.spark.sql.{DataFrame, SQLContext}

object OperatorMySql {
  val logger: Logger = Logger.getLogger(this.getClass.getSimpleName)

  /**
    * 将dataframe所有类型(除id外)转换为string后,通过c3p0的连接池方式,向mysql写入数据
    *
    * @param tableName       表名
    * @param resultDateFrame datafream
    */
  def saveDFtoDBUsePool(tableName: String, resultDateFrame: DataFrame): Unit = {
    val colNumbsers = resultDateFrame.columns.length
    val sql = getInsertSql(tableName, colNumbsers)
    val columnDataTypes = resultDateFrame.schema.fields.map(_.dataType)
    resultDateFrame.foreachPartition(partitionRecords => {
      val conn = MySqlPoolManager.getMysqlManager.getConnection
      val prepareStatement = conn.prepareStatement(sql)
      val metaData = conn.getMetaData.getColumns(null, "%", tableName, "%")
      try {
        conn.setAutoCommit(false)
        partitionRecords.foreach(record => {
          for (i <- 1 to colNumbsers) {
            val value = record.get(i - 1)
            val dateType = columnDataTypes(i - 1)
            if (value != null) {
              prepareStatement.setString(i, value.toString)
              dateType match {
                case _: ByteType => prepareStatement.setInt(i, record.getAs[Int](i - 1))
                case _: ShortType => prepareStatement.setInt(i, record.getAs[Int](i - 1))
                case _: IntegerType => prepareStatement.setInt(i, record.getAs[Int](i - 1))
                case _: LongType => prepareStatement.setLong(i, record.getAs[Long](i - 1))
                case _: BooleanType => prepareStatement.setBoolean(i, record.getAs[Boolean](i - 1))
                case _: FloatType => prepareStatement.setFloat(i, record.getAs[Float](i - 1))
                case _: DoubleType => prepareStatement.setDouble(i, record.getAs[Double](i - 1))
                case _: StringType => prepareStatement.setString(i, record.getAs[String](i - 1))
                case _: TimestampType => prepareStatement.setTimestamp(i, record.getAs[Timestamp](i - 1))
                case _: DateType => prepareStatement.setDate(i, record.getAs[Date](i - 1))
                case _ => throw new RuntimeException("nonsupport $ {dateType} !!!")
              }
            } else {
              metaData.absolute(i)
              prepareStatement.setNull(i, metaData.getInt("DATA_TYPE"))
            }
          }
          prepareStatement.addBatch()
        })
        prepareStatement.executeBatch()
        conn.commit()
      } catch {
        case e: Exception => println(s"@@ saveDFtoDBUsePool ${e.getMessage}")
      } finally {
        prepareStatement.close()
        conn.close()
      }
    })

  }

  /**
    * 拼接sql
    */
  def getInsertSql(tableName: String, colNumbers: Int): String = {
    var sqlStr = "insert into " + tableName + "values("
    for (i <- 1 to colNumbers) {
      sqlStr += "?"
      if (i != colNumbers) {
        sqlStr += ","
      }
    }
    sqlStr += ")"
    sqlStr
  }

  /**
    * 以元祖的额方式返回mysql属性信息
    *
    * @return
    */
  def getMysqlInfo: (String, String, String) = {
    val jdbcURL = PropertiyUtils.getFileProperties("", "")
    val userName = PropertiyUtils.getFileProperties("", "")
    val password = PropertiyUtils.getFileProperties("", "")
    (jdbcURL, userName, password)
  }

  /**
    * 从mysql中获取dataframe
    *
    * @param sqlContext     sqlContext
    * @param mysqlTableName 表名
    * @param queryCondition 查询条件
    * @return
    */
  def getDFFromeMysql(sqlContext: SQLContext, mysqlTableName: String, queryCondition: String = ""): DataFrame = {
    val (jdbcURL, userName, password) = getMysqlInfo
    val prop = new Properties()
    prop.put("user", userName)
    prop.put("password", password)
    //scala中其实equals和==是相同的,并不跟java中一样
    if (null == queryCondition || "" == queryCondition) {
      sqlContext.read.jdbc(jdbcURL, mysqlTableName, prop)
    } else {
      sqlContext.read.jdbc(jdbcURL, mysqlTableName, prop).where(queryCondition)
    }

  }

  /**
    * 删除数据表
    *
    * @param SQLContext
    * @param mysqlTableName
    * @return
    */
  def dropMysqlTable(SQLContext: SQLContext, mysqlTableName: String): Boolean = {
    val conn = MySqlPoolManager.getMysqlManager.getConnection
    val preparedStatement = conn.createStatement()
    try {
      preparedStatement.execute(s"drop table $mysqlTableName")
    } catch {
      case e: Exception =>
        println(s"mysql drop MysqlTable error:${e.getMessage}")
        false
    } finally {
      preparedStatement.close()
      conn.close()
    }
  }

  /**
    * 从表中删除数据
    *
    * @param SQLContext
    * @param mysqlTableName 表名
    * @param condition      条件,直接从where后面开始
    * @return
    */
  def deleteMysqlTableData(SQLContext: SQLContext, mysqlTableName: String, condition: String): Boolean = {
    val conn = MySqlPoolManager.getMysqlManager.getConnection
    val preparedStatement = conn.createStatement()
    try {
      preparedStatement.execute(s"delete from $mysqlTableName where $condition")
    } catch {
      case e: Exception =>
        println(s"mysql delete MysqlTableNameData error:${e.getMessage}")
        false
    } finally {
      preparedStatement.close()
      conn.close()
    }
  }

  /**
    * 保存dataframe到mysql中,如果表不存在的话,会自动创建
    *
    * @param tableName
    * @param resultDataFrame
    */
  def saveDFtoDBCreateTableIfNotExists(tableName: String, resultDataFrame: DataFrame) = {
    //如果没有表,根据dataframe建表
    createTableIfNotExist(tableName, resultDataFrame)
    //验证数据表字段和dataframe字段个数和名称,顺序是否一致
    verifyFieldConsistency(tableName, resultDataFrame)
    //保存df
    saveDFtoDBUsePool(tableName, resultDataFrame)
  }

  /**
    * 如果表不存在则创建
    *
    * @param tableName
    * @param df
    * @return
    */
  def createTableIfNotExist(tableName: String, df: DataFrame): AnyVal = {
    val conn = MySqlPoolManager.getMysqlManager.getConnection
    val metaData = conn.getMetaData
    val colResultSet = metaData.getColumns(null, "%", tableName, "%")
    //如果没有该表,创建数据表
    if (!colResultSet.next()) {
      //构建表字符串
      val sb = new StringBuilder(s"create table `$tableName`")
      df.schema.fields.foreach(x => {
        if (x.name.equalsIgnoreCase("id")) {
          //如果字段名是id,则设置为主键,不为空,自增
          sb.append(s"`${x.name}` int(255) not null auto_increment primary key,")
        } else {
          x.dataType match {
            case _: ByteType => sb.append(s"`${x.name}` int(100) default null,")
            case _: ShortType => sb.append(s"`${x.name}` int(100) default null,")
            case _: IntegerType => sb.append(s"`${x.name}` int(100) default null,")
            case _: LongType => sb.append(s"`${x.name}` bigint(100) default null,")
            case _: BooleanType => sb.append(s"`${x.name}` tinyint default null,")
            case _: FloatType => sb.append(s"`${x.name}` float(50) default null,")
            case _: DoubleType => sb.append(s"`${x.name}` double(50) default null,")
            case _: StringType => sb.append(s"`${x.name}` varchar(50) default null,")
            case _: TimestampType => sb.append(s"`${x.name}` timestamp default current_timestamp,")
            case _: DateType => sb.append(s"`${x.name}` date default null,")
            case _ => throw new RuntimeException(s"non support ${x.dataType}!!!")
          }
        }
      })
      sb.append(") engine = InnDB default charset=utf8")
      val sql_createTable = sb.deleteCharAt(sb.lastIndexOf(',')).toString()
      println(sql_createTable)
      val statement = conn.createStatement()
      statement.execute(sql_createTable)
    }
  }

  /**
    * 拼接insertOrUpdate语句
    *
    * @param tableName
    * @param cols
    * @param updateColumns
    * @return
    */
  def getInsertOrUpdateSql(tableName: String, cols: Array[String], updateColumns: Array[String]): String = {
    val colNumbers = cols.length
    var sqlStr = "insert into " + tableName + "("
    for (i <- 1 to colNumbers) {
      sqlStr += cols(i - 1)
      if (i != colNumbers) {
        sqlStr += ","
      }
    }
    sqlStr += ") values("
    for (i <- 1 to colNumbers) {
      sqlStr += "?"
      if (i != colNumbers) {
        sqlStr += ","
      }
    }
    sqlStr += ") on duplicate key update "
    updateColumns.foreach(str => {
      sqlStr += s"$str=?,"
    })
    sqlStr.substring(0, sqlStr.length - 1)
  }

  /**
    *
    * @param tableName
    * @param resultDateFrame 要入库的dataframe
    * @param updateColumns   要更新的字段
    */
  def insertOrUpdateDFtoDBUserPool(tableName: String, resultDateFrame: DataFrame, updateColumns: Array[String]): Boolean = {
    var status = true
    var count = 0
    val colNumbsers = resultDateFrame.columns.length
    val sql = getInsertOrUpdateSql(tableName, resultDateFrame.columns, updateColumns)
    val columnDataTypes = resultDateFrame.schema.fields.map(_.dataType)
    println(s"\n$sql")
    resultDateFrame.foreachPartition(partitionRecords => {
      val conn = MySqlPoolManager.getMysqlManager.getConnection
      val prepareStatement = conn.prepareStatement(sql)
      val metaData = conn.getMetaData.getColumns(null, "%", tableName, "%")
      try {
        conn.setAutoCommit(false)
        partitionRecords.foreach(record => {
          //设置需要插入的字段
          for (i <- 1 to colNumbsers) {
            val value = record.get(i - 1)
            val dateType = columnDataTypes(i - 1)
            if (value != null) {
              prepareStatement.setString(i, value.toString)
              dateType match {
                case _: ByteType => prepareStatement.setInt(i, record.getAs[Int](i - 1))
                case _: ShortType => prepareStatement.setInt(i, record.getAs[Int](i - 1))
                case _: IntegerType => prepareStatement.setInt(i, record.getAs[Int](i - 1))
                case _: LongType => prepareStatement.setLong(i, record.getAs[Long](i - 1))
                case _: BooleanType => prepareStatement.setBoolean(i, record.getAs[Boolean](i - 1))
                case _: FloatType => prepareStatement.setFloat(i, record.getAs[Float](i - 1))
                case _: DoubleType => prepareStatement.setDouble(i, record.getAs[Double](i - 1))
                case _: StringType => prepareStatement.setString(i, record.getAs[String](i - 1))
                case _: TimestampType => prepareStatement.setTimestamp(i, record.getAs[Timestamp](i - 1))
                case _: DateType => prepareStatement.setDate(i, record.getAs[Date](i - 1))
                case _ => throw new RuntimeException("nonsupport $ {dateType} !!!")
              }
            } else {
              metaData.absolute(i)
              prepareStatement.setNull(i, metaData.getInt("Data_Type"))
            }
          }
          //设置需要 更新的字段值
          for (i <- 1 to updateColumns.length) {
            val fieldIndex = record.fieldIndex(updateColumns(i - 1))
            val value = record.get(i)
            val dataType = columnDataTypes(fieldIndex)
            println(s"\n更新字段值属性索引: $fieldIndex,属性值:$value,属性类型:$dataType")
            if (value != null) {
              dataType match {
                case _: ByteType => prepareStatement.setInt(colNumbsers + i, record.getAs[Int](fieldIndex))
                case _: ShortType => prepareStatement.setInt(colNumbsers + i, record.getAs[Int](fieldIndex))
                case _: IntegerType => prepareStatement.setInt(colNumbsers + i, record.getAs[Int](fieldIndex))
                case _: LongType => prepareStatement.setLong(colNumbsers + i, record.getAs[Long](fieldIndex))
                case _: BooleanType => prepareStatement.setBoolean(colNumbsers + i, record.getAs[Boolean](fieldIndex))
                case _: FloatType => prepareStatement.setFloat(colNumbsers + i, record.getAs[Float](fieldIndex))
                case _: DoubleType => prepareStatement.setDouble(colNumbsers + i, record.getAs[Double](fieldIndex))
                case _: StringType => prepareStatement.setString(colNumbsers + i, record.getAs[String](fieldIndex))
                case _: TimestampType => prepareStatement.setTimestamp(colNumbsers + i, record.getAs[Timestamp](fieldIndex))
                case _: DateType => prepareStatement.setDate(colNumbsers + i, record.getAs[Date](fieldIndex))
                case _ => throw new RuntimeException(s"no support ${dataType} !!!")
              }
            } else {
              metaData.absolute(colNumbsers + i)
              prepareStatement.setNull(colNumbsers + i, metaData.getInt("data_Type"))
            }
          }
          prepareStatement.addBatch()
          count += 1
        })
        //批次大小为100
        if (count % 100 == 0) {
          prepareStatement.executeBatch()
        }
        conn.commit()
      } catch {
        case e: Exception =>
          println(s"@@  ${e.getMessage}")
          status = false
      } finally {
        prepareStatement.executeBatch()
        conn.commit()
        prepareStatement.close()
        conn.close()
      }
    })
    status
  }

  /**
    * 验证属性是否存在
    */
  def verifyFieldConsistency(tableName: String, df: DataFrame) = {
    val conn = MySqlPoolManager.getMysqlManager.getConnection
    val metaData = conn.getMetaData
    val colResultSet = metaData.getColumns(null, "%", tableName, "%")
    colResultSet.last()
    val tableFieldNum = colResultSet.getRow
    val dfFieldNum = df.columns.length
    if (tableFieldNum != dfFieldNum) {
      throw new Exception("")
    }
    for (i <- 1 to tableFieldNum) {
      colResultSet.absolute(i)
      val tableFieldName = colResultSet.getString("column_name")
      val dfFieldName = df.columns.apply(i - 1)
      if (tableFieldName.equals(dfFieldName)) {
        throw new Exception("")
      }
    }
    colResultSet.beforeFirst()
  }
}

  第六步:调用对应的方法,对数据库进行自定义增删改查,而不是通过dataFrame自带的api对数据库操作,这样更加的灵活。

package cn.com.xxx.audit

import cn.com.winner.audit.DBUtils.{OperatorMySql, PropertiyUtils}
import cn.com.winner.common.until.{DateOperator, DateUtil}
import org.apache.spark.HashPartitioner
import org.apache.spark.sql.DataFrame

/**
  * 持久化数据
  */
object SaveData {
  /**
    * DF数据写入mysql结果表
    *
    * @param tableName  保存的表名
    * @param ResultDFs  需要保存的DF
    * @param updateCols 更新的字段
    * @return
    */
  def saveToMysql(tableName: String, ResultDFs: Array[DataFrame], updateCols: Array[String]) = {
    //将DataFrmae进行合并
    val resultDF = LoadData.mergeDF(ResultDFs.toVector)
//这里直接调用OperatorMysql的insert方法,使用拼接sql的方式进行对数据库进行插入操作 OperatorMySql.insertOrUpdateDFtoDBUserPool(tableName, resultDF, updateCols) } }

  对于第五步中的sql拼接,我只是根据我的需求进行拼接,我们可以根据自己不同的需求对sql进行拼接,并且调用不同的方法对dataFrame进行操作。

 

转载于:https://www.cnblogs.com/Gxiaobai/p/10652338.html

你可能感兴趣的:(数据库,大数据,java)