- 美发行业的现状与未来趋势
shboka920702
大数据生活
美发行业作为美容产业的重要组成部分,近年来发展迅速。随着消费者对个性化服务的需求不断增加,美发行业也在不断变革和创新。然而,行业在快速发展的同时,也面临着诸多挑战和痛点。本文将探讨美发行业的现状、痛点以及未来的发展趋势,并展望如何通过技术手段提升行业效率。根据相关数据显示,全球美发行业市场规模在2022年已达到约1000亿美元,预计到2027年将增长至1500亿美元。中国作为全球第二大美发市场,市
- 突破美业经营困境:数字化工具如何助力门店提升效
shboka920702
大数据人工智能科技生活
在美业行业中,门店经营者们每天都在面临各种各样的挑战。无论是小型美容院还是大型连锁机构,传统管理方式的弊端逐渐显现,效率低下、数据混乱、客户流失、员工管理困难等问题层出不穷。这些问题不仅影响了门店的日常运营,还直接压缩了利润空间。那么,如何在竞争激烈的市场中脱颖而出,实现高效管理和持续增长呢?行业现状与痛点分析1.传统管理方式效率低下,数据混乱许多美业门店仍然依赖手工记录或简单的电子表格来管理客户
- 美发店管理升级:数字化如何解决账务与提成的痛点
shboka920702
科技生活大数据人工智能
在美发行业,账务核对和员工业绩提成计算一直是经营者面临的两大难题。无论是小型美发店还是大型连锁美容院,每天都会面临大量的交易流水、会员卡充值、产品消费等复杂的财务数据。与此同时,员工的提成计算也因服务项目多样、提成比例不同而变得繁琐。这些问题不仅耗费大量时间,还容易出错,导致经营者难以专注于业务拓展和服务提升。传统账务核对的痛点在传统的美发店管理中,账务核对通常依赖于手工记录和Excel表格。每天
- NanoMQ ds笔记250306
kfepiza
网络通讯传输协议物联笔记网络协议网络信息与通信
NanoMQ多版本下载地址https://www.emqx.com/zh/downloads/nanomqNanoMQ官方文档https://nanomq.io/docs/zh/latest/NanoMQ是一个专为物联网边缘计算设计的轻量级、高性能MQTT消息代理(MessageBroker),由中国的开源物联网公司EMQ开发并维护。它专注于在资源受限的边缘设备上提供高效的MQTT消息通信能力,同
- 中国美容养生平台实现产业的转型
2401_84109346
大数据人工智能
中国美容养生平台可以创造多方面的价值,具体如下:经济贡献:美容养生行业对国民经济的贡献日益显著。随着市场规模和行业产值的不断提升,美容养生行业已成为推动经济增长的重要力量。例如,预计到2025年,中国生活美容服务行业的市场规模将达到8375亿元。技术创新与数字化转型:随着5G时代的到来,美容养生平台的运营方式不断创新,呈现出更强的竞争力。技术创新和数字化转型为美容养生行业带来了新的发展机遇,如新型
- 基于SpringBoot+Vue的校园跑腿原生小程序
学途源码资源站
Java毕设Java项目springbootvue.js小程序校园跑腿
系列文章目录1.基于SSM的洗衣房管理系统+原生微信小程序+LW参考示例2.基于SpringBoot的宠物摄影网站管理系统+LW参考示例3.基于SpringBoot+Vue的企业人事管理系统+LW参考示例4.基于SSM的高校实验室管理系统+LW参考示例5.基于SpringBoot的二手数码回收系统+原生微信小程序+LW参考示例6.基于SSM的民宿预订管理系统+LW参考示例7.基于SpringBoo
- 【大数据】大数据处理-Lambda架构-Kappa架构
weixin_33884611
大数据系统架构
大数据处理-Lambda架构-Kappa架构elasticsearch-headElasticsearch-sqlclientNLPchina/elasticsearch-sql:UseSQLtoqueryElasticsearch360企业安全V5.6SP1,杨军01,您好!lamda架构_百度搜索Lambda架构vsKappa架构-数据源博客-CSDN博客数据系统架构——Lambdaarchi
- 如何使用 SparkLLM 进行自然语言处理
shuoac
python
在当代自然语言处理领域,拥有强大的跨域知识和语言理解能力的模型至关重要。iFLYTEK开发的SparkLLM便是这样一个大规模认知模型。通过学习大量文本、代码和图像,SparkLLM能够理解和执行基于自然对话的任务。在本文中,我们将深入探讨如何配置和使用SparkLLM来处理自然语言任务。技术背景介绍大规模语言模型(LLM)近年来在各个领域中获得了广泛的应用,它们在处理自然语言任务时表现出色。iF
- Python高级开发工程师
巴啦啦小魔仙变身
python开发语言
Python高级开发工程师通常会围绕技术能力、项目经验、问题解决能力等方面展开,以下为你详细介绍面试的常见内容、准备方式及注意事项:常见面试内容技术基础语言特性:深入理解Python的高级特性,如装饰器、元类、描述符等的原理和应用场景。例如,面试官可能会要求你现场编写一个装饰器来实现函数执行时间的统计。数据结构与算法:熟悉常见的数据结构(如列表、字典、集合、堆、栈、队列、链表、树、图等)和算法(如
- DeepSeek该选蒸馏版还是满血版
飞翔的FOX
人工智能
针对不同版本的DeepSeek,需要从多个维度综合分析:1.模型规模与基础能力671B模型在理论上具备更强的底层推理能力:更大参数量意味着更强的模式识别、逻辑推理和知识储备能力,尤其在跨领域、开放域任务中优势显著。70B模型若未经过充分行业适配,其原始能力上限低于671B。但在特定场景下,通过优化可能突破这一限制。2.行业数据适配的关键作用长期迭代的70B模型可通过以下方式缩小差距:领域微调:持续
- 仓储系统货位优化毕业论文【Flexsim仿真】
aikelele
人工智能
一、内容简介由堆垛机、货架、输送系统、管理系统、控制系统等组成的传统堆垛式仓储系统因为其成熟的技术和推广方式、高效等特点广泛的应用在物流、车间、制造等行业。但是堆垛机仓库每个巷道都会拥有一台堆垛机,其作业方式受到限制,鲁棒性比较差,一个巷道堆垛机出现问题题将导致整个巷道作业停止。同时,堆垛机立体仓库的可协调性比较差,企业的产品有旺季、淡季之分,在旺季时可能满足正常的出入库需求;在淡季时,可能会出现
- 2024年大数据技术4:Lambda和Kappa架构区别_lambda架构和kappa架构区别,2024年最新你花了多久弄明白架构设计
2401_84182146
程序员大数据面试学习
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新需要这份系统化资料的朋友,可以戳这里获取虽然Lambda架构使用起来十分灵活,并且可以适用于很多的应用场景,但在实际应用的时候,Lambda架构也
- 大数据技术4:Lambda和Kappa架构区别_lambda架构和kappa架构区别(3)
2301_76348014
程序员大数据面试学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。需要这份系统化资料的朋友,可以戳这里获取一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!Lambda架构总共由三层系统组成:批处理层(Batc
- KUKA机器人:智能制造的先锋力量
机器人之树小风
机器人科技经验分享
在科技日新月异的今天,自动化和智能化已成为推动制造业转型升级的重要引擎。作为全球领先的智能、资源节约型自动化解决方案供应商,KUKA机器人在这一浪潮中扮演着举足轻重的角色。本文将带您深入了解KUKA机器人的发展现状,探索其在智能制造领域的广泛应用与未来前景。一、KUKA机器人的全球布局与实力KUKA,这家源自德国的跨国自动化集团公司,以其卓越的技术实力和创新能力享誉全球。公司拥有超过15000名员
- Spring Boot 整合 Redis 步骤详解
m0_74823094
面试学习路线阿里巴巴springbootredisbootstrap
文章目录1.引言2.添加依赖3.配置Redis连接信息4.创建Redis操作服务类5.使用RedisTemplate或ReactiveRedisTemplate6.测试Redis功能7.注意事项8.总结Redis是一个高性能的键值存储系统,常用于缓存、消息队列等多种场景。将Redis与SpringBoot结合使用可以极大提升应用的性能和响应速度。本文将详细介绍如何在SpringBoot应用中整合R
- PointNet++改进策略 :模块改进 | x-Conv | PointCNN, 结合局部结构与全局排列提升模型性能
我是瓦力
PointNet++改进策略人工智能深度学习计算机视觉
目录前言PointCNN实现细节1.XXX-Conv操作输入输出步骤2.PointCNN网络架构层级卷积分类与分割任务3.数据增强4.效率优化前言这篇论文介绍了一种名为PointCNN的方法,旨在从点云(pointcloud)数据中学习特征。传统卷积神经网络(CNN)在处理规则网格数据(如图像)时非常有效,但由于点云是无序且不规则的,直接在其上应用卷积操作会导致形状信息丢失,并对点的排列顺序敏感。
- 智能优化算法:海洋捕食者算法
智能算法研学社(Jack旭)
智能优化算法算法机器学习神经网络
智能优化算法:海洋捕食者算法文章目录智能优化算法:海洋捕食者算法1.算法原理2.实验结果3.参考文献4.Matlab代码摘要:海洋捕食者算法(MarinePredatorsAlgorithm,MPA)是AfshinFaramarzi等人于2020年提出的一种新型元启发式优化算法,其灵感来源于海洋适者生存理论,即海洋捕食者通过在Lévy游走或布朗游走之间选择最佳觅食策略。具有寻优能力强等特点。1.算
- 人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
- 熬夜一星期!我把WPS的功能用Qt重写了
十年编程老舅
QT开发qt开发qt项目qt项目实战qt编程计算机毕设项目c++项目
我收到大量粉丝提问:"学完C++/Qt技术栈后,如何通过实战串联知识点?作为深耕C++/Qt领域的技术人,我始终认为通过真实项目实践是掌握技术栈的最佳方式。今天我将以自研的"智汇协同Office"项目为例,深度剖析如何用Qt构建企业级桌面应用。无论你是刚学完Qt基础的新手,还是想进阶提升的开发者,这个支持多文档处理、富文本编辑、打印预览的实战案例都将让你对Qt开发有全新认知。一、项目技术全景图本项
- 从零手撸工业级Qt文件传输系统:TCP粘包/断点续传/SSL加密全解
十年编程老舅
QT开发qt项目qt项目实战c++项目qt计算机毕设项目qt文件传输qt教程
很多初学者都会遇到这个坎,如何将Windows数据结构、网络编程等知识整合为完整的项目。本文将深入解析一个基于C++Qt开发的企业级文件传输系统,涵盖TCP通信、断点续传、SSL加密、SQLite持久化等核心技术。(项目源码来文章底部拿)一、系统核心功能1.基础通信能力双工消息传输(支持中文字符)文件传输进度条同步(4KB分块策略)传输完整性验证(安装包可执行性测试)2.高级特性断点续传(记录已传
- 搜广推校招面经四十四
Y1nhl
搜广推面经python机器学习人工智能pytorch开发语言
快手主站推荐算法一、因果里面前门准则是什么(Front-DoorCriterion)前门准则是因果推断中的一个重要概念,用于在存在未观测混杂因素的情况下识别因果效应。它由朱迪亚·珀尔(JudeaPearl)提出,是后门准则的补充。1.1.定义前门准则适用于以下情况:存在一个中介变量MMM,它完全介导了处理变量XXX对结果变量YYY的因果效应。处理变量XXX和结果变量YYY之间存在未观测的混杂因素U
- JSON对象处理工具类
波波有料
JAVAjsonjava开发语言
目录1.工具类的功能设计2.工具类的实现依赖配置工具类代码3.工具类的使用示例示例1:美化JSON打印示例2:从JSON中提取数据示例3:修改JSON数据示例4:合并JSON对象4.总结在现代软件开发中,JSON(JavaScriptObjectNotation)是一种广泛使用的轻量级数据交换格式。由于其简洁性和易读性,JSON被广泛应用于API通信、配置文件、数据存储等场景。然而,在处理JSON
- JavaScript 性能优化实战案例与解决方案
Real Man★
javascript性能优化开发语言
JavaScript性能优化是提升Web应用流畅度和用户体验的核心环节。以下是针对常见性能问题的实战案例与优化方案,涵盖代码优化、渲染优化、内存管理等多个方面:一、高频事件处理优化案例1:滚动事件卡顿问题:页面监听scroll事件实现动态效果,但频繁触发导致卡顿。优化方案:javascript复制//1.节流(Throttle):固定时间间隔执行functionthrottle(fn,delay)
- Flutter中网络图片加载和缓存
Flutter编程指南
FlutterFlutterAPPDarthttp跨平台技术
文章目录前言重温小部件ImageImage.network源码分析实际问题解决方案代码实现自定义ImageProvider使用写在最后前言应用开发中经常会碰到网络图片的加载,通常我们会对图片进行缓存,以便下次加载同一张图片时不用再重新下载,在包含有大量图片的应用中,会大幅提高图片展现速度、提升用户体验且为用户节省流量。Flutter本身提供的ImageWidget已经实现了加载网络图片的功能,且具
- 遇到 “No supported authentication method available” 错误的完整解决方案
四月的我
linux
问题原因此错误表示SSH服务器拒绝了WinSCP的认证方式(如密码或密钥)。常见原因:SSH服务器配置禁用了密码认证(PasswordAuthenticationno且未配置密钥)。用户目录权限错误导致SSH无法读取认证文件。密钥认证配置错误(如authorized_keys权限问题)。解决方案步骤1:确保启用密码认证在WSL中编辑SSH配置文件:bashsudonano/etc/ssh/sshd
- 【AI深度学习网络】Transformer时代,RNN(循环神经网络)为何仍是时序建模的“秘密武器”?
arbboter
人工智能rnn人工智能深度学习循环神经网络记忆序列数据循环连接
引言:什么是循环神经网络(RNN)?循环神经网络(RecurrentNeuralNetwork,RNN)是一种专门处理序列数据(如文本、语音、时间序列)的深度学习模型。与传统神经网络不同,RNN具有“记忆”能力,能够通过内部状态(隐藏状态)保留历史信息,从而捕捉序列中的时间依赖关系。在自然语言处理、语音识别、时间序列预测等领域,数据本质上是序列化的——即当前数据点与前后数据点存在依赖关系。传统的前
- 鸿蒙HarmonyOS开发中的知识:Swiper组件
代码中的爱马仕
鸿蒙HarmonyOpenHarmonyharmonyos华为鸿蒙
这个对应HarmonyOS应用开发就需要我们用到Swiper组件,本篇我们就此组件进行介绍。Swiper组件介绍1,滑块视图容器,提供子组件滑动轮播显示的能力。该组件从APIVersion7开始支持。官方doc地址:https://developer.huawei.com/consumer/cn/doc/harmonyos-references-V2/ts-container-swiper-000
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- N卡 英伟达Nvidia 显卡及其计算能力(Compute Capability)表
Panesle
显卡Nvidiagpu算力英伟达
N卡英伟达Nvidia显卡及其计算能力(ComputeCapability)表某些库或软件对显卡算力有要求,可参考下表核对。比如:AWQ量化模型不支持算力小于7.5的显卡V100:ValueError:ThequantizationmethodawqisnotsupportedforthecurrentGPU.Minimumcapability:75.Currentcapability:70.
- 为什么说Unity引擎支持跨平台
你一身傲骨怎能输
编程语言unity游戏引擎
Unity引擎支持跨平台的主要理由包括以下几点:多平台发布:Unity引擎允许开发人员使用相同的代码和资源来构建应用程序和游戏,并在多个平台上发布,包括Windows、Mac、Linux、iOS、Android、WebGL、PlayStation、Xbox等。这种跨平台发布的能力使开发人员能够将他们的应用程序和游戏带到更广泛的受众中。统一开发环境:Unity提供了一个统一的开发环境,使开发人员可以
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs