AI项目十七:ResNet50训练部署教程

若该文为原创文章,转载请注明原文出处。

ResNet50训练主要还是想部署到RK3568开发板上,先记录下训练和转成ONNX模型过程。

一、 Resnet50简介

       ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。 残差网络的特点是容易优化,并且能够通过增加相当的深度来提高准确率。其内部的残差块使用了跳跃连接,缓解了在深度神经网络中增加深度带来的梯度消失问题。

AI项目十七:ResNet50训练部署教程_第1张图片

二、数据集下载

       本教程以车辆分类算法为例,数据集的百度网盘下载链接为:

https://pan.baidu.com/s/1pkYm9AA3s3WDM7GecShlbQ 提取码:6666​

       解压完成后得到以下两个文件夹:

AI项目十七:ResNet50训练部署教程_第2张图片

       打开可以看到一共10类汽车:

AI项目十七:ResNet50训练部署教程_第3张图片

AI项目十七:ResNet50训练部署教程_第4张图片

三、环境搭建

1、创建虚拟环境

conda create -n Resnet50_env python=3.8 -y

2、激活环境

conda activate Resnet50_env

注意:使用的是CPU版本,电脑无GPU

3、安装环境

pip install numpy
pip install torch
pip install torchvision
pip install matplotlib

至此,环境安装完成,开始训练

四、 ResNet50图像分类训练

直接上源码:train.py

# -#-coding:utf-8 -*-

import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torch.autograd.variable import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

# 2.定义超参数
BATCH_SIZE = 16  # 每批处理的数据
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')  # 放在cuda或者cpu上训练
EPOCHS = 15  # 训练数据集的轮次
modellr = 1e-3

# 3.构建pipeline,对图像做处理
pipeline = transforms.Compose([
    # 分辨率重置为256
    transforms.Resize(256),
    # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像(因为这图片像素不一致直接统一)
    transforms.CenterCrop(224),
    # 将图片转成tensor
    transforms.ToTensor(),
    # 正则化,模型出现过拟合现象时,降低模型复杂度
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 图片路径(训练图片和测试图片的)
base_dir_train = 'G:/enpei_Project_Code/22_Resnet50_bus/1.data/datasets/train'
base_dir_val = 'G:/enpei_Project_Code/22_Resnet50_bus/1.data/datasets/val'

# 4. 加载数据集
train_dataset = datasets.ImageFolder(root=base_dir_train, transform=pipeline)
print("train_dataset=" + repr(train_dataset[1][0].size()))
print("train_dataset.class_to_idx=" + repr(train_dataset.class_to_idx))
# 创建训练集的可迭代对象,一个batch_size地读取数据,shuffle设为True表示随机打乱顺序读取
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
 
# 测试集
val_dataset = datasets.ImageFolder(root=base_dir_val, transform=pipeline)
print(val_dataset)
print("val_dataset=" + repr(val_dataset[1][0].size()))
print("val_dataset.class_to_idx=" + repr(val_dataset.class_to_idx))
# 创建测试集的可迭代对象,一个batch_size地读取数据
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=True)


# 获得一批测试集的数据
images, labels = next(iter(val_loader))
print(images.shape)
print(labels.shape)
 

# 损失函数,交叉熵损失函数
criterion = nn.CrossEntropyLoss()
 
# 使用预训练模型
resnet_model = torchvision.models.resnet50(pretrained=True)
num_ftrs = resnet_model.fc.in_features
resnet_model.fc = nn.Linear(num_ftrs, 10)
resnet_model.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(resnet_model.parameters(), lr=modellr)
#optimizer = optim.SGD(net.parameters(), lr = 0.01)

train_loss_list = []
train_accuracy_list = []
test_loss_list = []
test_accuracy_list = []
train_iteration_list = []
test_iteration_list = []


best_val_acc = 0

 
# 定义训练方法
def train(model, device, train_loader, optimizer, epoch):
    iteration = 0
    train_correct = 0.0
    model.train()
    sum_loss = 0.0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        # 获取数据与标签
        data, target = Variable(data).to(device), Variable(target).to(device)
        
        # 梯度清零
        optimizer.zero_grad()
        
        # 计算损失
        output = model(data)
        loss = criterion(output, target)
        
        #反向传播
        loss.backward()
        
        #更新参数
        optimizer.step()
        
        print_loss = loss.data.item()
        sum_loss += print_loss
        _, train_predict = torch.max(output.data, 1)

        if torch.cuda.is_available():
            train_correct += (train_predict.cuda() == target.cuda()).sum()
        else:
            train_correct += (train_predict == target).sum()
        accuracy = (train_correct / total_num) * 100
        print("Epoch: %d , Batch: %3d , Loss : %.8f,train_correct:%d , train_total:%d , accuracy:%.6f" % (
            epoch + 1, batch_idx + 1, loss.item(), train_correct, total_num, accuracy))
        # 存在集合画图
        if (epoch + 1) == EPOCHS:  # 只画出最后一个epoch时候的准确度变化曲线
            iteration += 1
            train_loss_list.append(loss.item())
            train_iteration_list.append(iteration)
            train_accuracy_list.append(accuracy)
 
 
# 定义验证方法
def val(model, device, val_loader, epoch):
    print("=====================预测开始=================================")
    iteration = 0
    model.eval()
    test_loss = 0.0
    correct = 0.0
    total_num = len(val_loader.dataset)
    print(total_num, len(val_loader))
    with torch.no_grad():
        for data, target in val_loader:
            data, target = Variable(data).to(device), Variable(target).to(device)
            output = model(data)
            loss = criterion(output, target)
            _, pred = torch.max(output.data, 1)
            if torch.cuda.is_available():
                correct += torch.sum(pred.cuda() == target.cuda())
            else:
                correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        acc = correct / total_num * 100
        avg_loss = test_loss / len(val_loader)
        """
            因为调用这个方法的时候就是每次结束训练一次之后调用
        """
        # iteration += 1
        # 存入集合准备画图
        test_loss_list.append(avg_loss)
        test_accuracy_list.append(acc)
        test_iteration_list.append(epoch)
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.6f}%)\n'.format(
            avg_loss, correct, len(val_loader.dataset), acc))
            
        global best_val_acc
        if acc > best_val_acc:
            best_val_acc = acc
            print("Best Accuracy:{:.6f}%".format(best_val_acc))
            torch.save(resnet_model.state_dict(), 'best-{:.6f}.model.pth'.format(best_val_acc))  # 保存模型

 
# 训练
for epoch in range(EPOCHS):
    train(resnet_model, DEVICE, train_loader, optimizer, epoch)
    val(resnet_model, DEVICE, val_loader, epoch)
    #torch.save(resnet_model, 'model.pth')  # 保存模型
 
# 可视化测试机的loss和accuracy
plt.figure(1)
plt.plot(test_iteration_list, test_loss_list)
plt.title("ResNet50 test loss")
plt.ylabel("loss")
plt.xlabel("Number of test iteration")
plt.show()
 
plt.figure(2)
plt.plot(test_iteration_list, test_accuracy_list)
plt.title("ResNet50 test accuracy")
plt.xlabel("Number of test iteration")
plt.ylabel("accuracy")
plt.show()
 
# 可视化训练集loss和accuracy
plt.figure(3)
plt.plot(train_iteration_list, train_loss_list)
plt.title("ResNet50 train loss")
plt.xlabel("Number of train iteration")
plt.ylabel("accuracy")
plt.show()
 
plt.figure(4)
plt.plot(train_iteration_list, train_accuracy_list)
plt.title("ResNet50 train accuracy")
plt.xlabel("Number of train iteration")
plt.ylabel("accuracy")
plt.show()

代码需要注意的是数据集路径,用的是绝对路径,自行修改。

AI项目十七:ResNet50训练部署教程_第5张图片

代码训练的epoch是15,等待一段时间吧!

五、测试模型

测试模型脚本predict.py

import os
from PIL import Image
import cv2
import torch
import torch.nn as nn
from torch.autograd.variable import Variable
import torchvision
from torchvision import transforms

# 0-SUV, 1-BUS, 2-family sedan, 3-fire engine, 4-heavy truck, 
# 5-jeep, 6-mini bus, 7-racing car, 8-taxi, 9-truck

def predict_single_image():
    
    MODEL_SAVE_FILE = 'best-82.000000.model.pth'
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    
    model = torchvision.models.resnet50()
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 10)
    model.to(device)
    
    model.load_state_dict(torch.load(MODEL_SAVE_FILE,map_location='cpu'))
    
    
    model = torch.nn.DataParallel(model,device_ids=[0])
    model.eval()
    
    img = cv2.imread("test.jpg")
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(img)
    
    pipeline = transforms.Compose([
    # 分辨率重置为256
    transforms.Resize(256),
    # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像(因为这图片像素不一致直接统一)
    transforms.CenterCrop(224),
    # 将图片转成tensor
    transforms.ToTensor(),
    # 正则化,模型出现过拟合现象时,降低模型复杂度
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    image = pipeline(image)
    image = image.unsqueeze(0)
    print(image.shape)

    input_var = Variable(image).float().to(device)
    output = model(input_var)
    print("output:", output)
    print("output.shape:", output.shape)
    
    soft_output = torch.softmax(output, dim=-1)
    print("soft_output:", soft_output)
    
    percent, predicted = torch.max(soft_output.data, 1)
    print("percent:", percent)
    print("predicted:", predicted)
    
    '''
    USE_GPU = torch.cuda.is_available()
    if USE_GPU:
        inputs = inputs.cuda()
    if not os.path.exists(MODEL_SAVE_FILE):
        print('can not find model save file.')
        exit()
    else:
        if USE_GPU:
            model.load_state_dict(torch.load(MODEL_SAVE_FILE))
        else:
            model.load_state_dict(torch.load(MODEL_SAVE_FILE, map_location=lambda storage, loc: storage))
        outputs = model(inputs)
        _, prediction_tensor = torch.max(outputs.data, 1)
        if USE_GPU:
            prediction = prediction_tensor.cpu().numpy()[0][0]
            print('predict: ', prediction)
            print('this is {}'.format(classes_name[prediction]))
        else:
            prediction = prediction_tensor.numpy()[0][0]
            print('predict: ', prediction)
            print('this is {}'.format(classes_name[prediction]))
    '''


predict_single_image()

运行

python predict.py

AI项目十七:ResNet50训练部署教程_第6张图片

六、模型转换

1、转成onnx模型

pth_to_onnx.py

import torch
import torch.nn as nn
import torchvision
from torch.autograd.variable import Variable


MODEL_SAVE_FILE = 'best-82.000000.model.pth'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

model = torchvision.models.resnet50()
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)
model.to(device)

model.load_state_dict(torch.load(MODEL_SAVE_FILE,map_location='cpu'))

batch_size = 1  #批处理大小

# #set the model to inference mode
model.eval()

d_input = Variable(torch.randn(1, 3, 224, 224))
export_onnx_file = "10class_ResNet50.onnx"		# 目的ONNX文件名
torch.onnx.export(model, d_input, export_onnx_file, opset_version=12,verbose=True)

这里需要注意的 是opset_version算子,rk3568用12

python pth_to_onnx.py

AI项目十七:ResNet50训练部署教程_第7张图片

onnx模型是我需要的,打算部署到rk3568,需要把onnx模型转成rknn模型,后续测试

2、转成pt模型

pth_to_pt.py

import torch
import torch.nn as nn
import torchvision


MODEL_SAVE_FILE = 'best-82.000000.model.pth'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

model = torchvision.models.resnet50()
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)
model.to(device)

model.load_state_dict(torch.load(MODEL_SAVE_FILE,map_location='cpu'))

model.eval()

example = torch.rand(1,3,224,224).to(device)
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save('./10class_ResNet50.pt')

运行转换:

python pth_to_pt.py

如有侵权,或需要完整代码,请及时联系博主。

你可能感兴趣的:(AI计算机视觉,人工智能)