python scipy.stats.norm.cdf_Python stats.norm方法代码示例

本文整理汇总了Python中scipy.stats.norm方法的典型用法代码示例。如果您正苦于以下问题:Python stats.norm方法的具体用法?Python stats.norm怎么用?Python stats.norm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块scipy.stats的用法示例。

在下文中一共展示了stats.norm方法的24个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

​点赞 6

# 需要导入模块: from scipy import stats [as 别名]

# 或者: from scipy.stats import norm [as 别名]

def __init__(self,

nbases,

Xdim,

mean=Parameter(norm_dist(), Bound()),

lenscale=Parameter(gamma(1.), Positive()),

regularizer=None,

random_state=None

):

"""See this class's docstring."""

self.random_state = random_state # for repr

self._random = check_random_state(random_state)

self._init_dims(nbases, Xdim)

self._params = [self._init_param(mean),

self._init_param(lenscale)]

self._init_matrices()

super(_LengthScaleBasis, self).__init__(regularizer)

开发者ID:NICTA,项目名称:revrand,代码行数:18,

示例2: conf_int

​点赞 6

# 需要导入模块: from scipy import stats [as 别名]

# 或者: from scipy.stats import norm [as 别名]

def conf_int(self, alpha=.05):

"""

Returns the confidence intervals of the marginal effects

Parameters

----------

alpha : float

Number between 0 and 1. The confidence intervals have the

probability 1-alpha.

Returns

-------

conf_int : ndarray

An array with lower, upper confidence intervals for the marginal

effects.

"""

_check_at_is_all(self.margeff_options)

me_se = self.margeff_se

q = stats.norm.ppf(1 - alpha / 2)

lower = self.margeff - q * me_se

upper = self.margeff + q * me_se

return np.asarray(lzip(lower, upper))

开发者ID:birforce,项目名称:vnpy_crypto,代码行数:24,

示例3: test_mixture_rvs_fixed

​点赞 6

# 需要导入模块: from scipy import stats [as 别名]

# 或者: from scipy.stats import norm [as 别名]

def test_mixture_rvs_fixed(self):

mix = MixtureDistribution()

np.random.seed(1234)

res = mix.rvs([.15,.85], 50, dist=[stats.norm, stats.norm], kwargs =

(dict(loc=1,scale=.5),dict(loc=-1,scale=.5)))

npt.assert_almost_equal(

res,

np.array([-0.5794956 , -1.72290504, -1.70098664, -1.0504591 ,

-1.27412122,-1.07230975, -0.82298983, -1.01775651,

-0.71713085,-0.2271706 ,-1.48711817, -1.03517244,

-0.84601557, -1.10424938, -0.48309963,-2.20022682,

0.01530181, 1.1238961 , -1.57131564, -0.89405831,

-0.64763969, -1.39271761, 0.55142161, -0.76897013,

-0.64788589,-0.73824602, -1.46312716, 0.00392148,

-0.88651873, -1.57632955,-0.68401028, -0.98024366,

-0.76780384, 0.93160258,-2.78175833,-0.33944719,

-0.92368472, -0.91773523, -1.21504785, -0.61631563,

1.0091446 , -0.50754008, 1.37770699, -0.86458208,

-0.3040069 ,-0.96007884, 1.10763429, -1.19998229,

-1.51392528, -1.29235911]))

开发者ID:birforce,项目名称:vnpy_crypto,代码行数:22,

示例4: test_compare

​点赞 6

# 需要导入模块: from scipy import stats [as 别名]

# 或者: from scipy.stats import norm [as 别名]

def test_compare(self):

xx = self.res1.support

kde_vals = [self.res1.evaluate(xi) for xi in xx]

kde_vals = np.squeeze(kde_vals) #kde_vals is a "column_list"

mask_valid = np.isfinite(kde_vals)

# TODO: nans at the boundaries

kde_vals[~mask_valid] = 0

npt.assert_almost_equal(self.res1.density, kde_vals,

self.decimal_density)

# regression test, not compared to another package

nobs = len(self.res1.endog)

kern = self.res1.kernel

v = kern.density_var(kde_vals, nobs)

v_direct = kde_vals * kern.L2Norm / kern.h / nobs

npt.assert_allclose(v, v_direct, rtol=1e-10)

ci = kern.density_confint(kde_vals, nobs)

crit = 1.9599639845400545 #stats.norm.isf(0.05 / 2)

hw = kde_vals - ci[:, 0]

npt.assert_allclose(hw, crit * np.sqrt(v), rtol=1e-10)

hw = ci[:, 1] - kde_vals

npt.asser

你可能感兴趣的:(python)