《动手学深度学习》TensorFlow2.0版本

机器学习&深度学习入门精选&Python&Tensorflow&Pytorch​​​​​​​

对于刚入门深度学习的童鞋,这里分享下大神们开源的将《动手学深度学习》 原书中MXNet代码实现改为TensorFlow2.0实现,欢迎入坑,这是一个非常棒的入门手册,github代码。

目录

  • 简介
  • 阅读指南
  • 1. 深度学习简介
  • 2. 预备知识
    • 2.1 环境配置
    • 2.2 数据操作
    • 2.3 自动求梯度
    • 2.4 查阅文档
  • 3. 深度学习基础
    • 3.1 线性回归
    • 3.2 线性回归的从零开始实现
    • 3.3 线性回归的简洁实现
    • 3.4 softmax回归
    • 3.5 图像分类数据集(Fashion-MNIST)
    • 3.6 softmax回归的从零开始实现
    • 3.7 softmax回归的简洁实现
    • 3.8 多层感知机
    • 3.9 多层感知机的从零开始实现
    • 3.10 多层感知机的简洁实现
    • 3.11 模型选择、欠拟合和过拟合
    • 3.12 权重衰减
    • 3.13 丢弃法
    • 3.14 正向传播、反向传播和计算图
    • 3.15 数值稳定性和模型初始化
    • 3.16 实战Kaggle比赛:房价预测
  • 4. 深度学习计算
    • 4.1 模型构造
    • 4.2 模型参数的访问、初始化和共享
    • 4.3 模型参数的延后初始化
    • 4.4 自定义层
    • 4.5 读取和存储
    • 4.6 GPU计算
  • 5. 卷积神经网络
    • 5.1 二维卷积层
    • 5.2 填充和步幅
    • 5.3 多输入通道和多输出通道
    • 5.4 池化层
    • 5.5 卷积神经网络(LeNet)
    • 5.6 深度卷积神经网络(AlexNet)
    • 5.7 使用重复元素的网络(VGG)
    • 5.8 网络中的网络(NiN)
    • 5.9 含并行连结的网络(GoogLeNet)
    • 5.10 批量归一化
    • 5.11 残差网络(ResNet)
    • 5.12 稠密连接网络(DenseNet)
  • 6. 循环神经网络
    • 6.1 语言模型
    • 6.2 循环神经网络
    • 6.3 语言模型数据集(周杰伦专辑歌词)
    • 6.4 循环神经网络的从零开始实现
    • 6.5 循环神经网络的简洁实现
    • 6.6 通过时间反向传播
    • 6.7 门控循环单元(GRU)
    • 6.8 长短期记忆(LSTM)
    • 6.9 深度循环神经网络
    • 6.10 双向循环神经网络
  • 7. 优化算法
    • 7.1 优化与深度学习
    • 7.2 梯度下降和随机梯度下降
    • 7.3 小批量随机梯度下降
    • 7.4 动量法
    • 7.5 AdaGrad算法
    • 7.6 RMSProp算法
    • 7.7 AdaDelta算法
    • 7.8 Adam算法
  • 8. 计算性能
    • 8.1 命令式和符号式混合编程
    • 8.2 异步计算
    • 8.3 自动并行计算
    • 8.4 多GPU计算
  • 9. 计算机视觉
    • 9.1 图像增广
    • 9.2 微调
    • 9.3 目标检测和边界框
    • 9.4 锚框
    • 9.5 多尺度目标检测
    • 9.6 目标检测数据集(皮卡丘)
    • 待更新...
  • 10. 自然语言处理
    • 10.1 词嵌入(word2vec)
    • 10.2 近似训练
    • 10.3 word2vec的实现
    • 10.4 子词嵌入(fastText)
    • 10.5 全局向量的词嵌入(GloVe)
    • 10.6 求近义词和类比词
    • 10.7 文本情感分类:使用循环神经网络
    • 10.8 文本情感分类:使用卷积神经网络(textCNN)
    • 10.9 编码器—解码器(seq2seq)
    • 10.10 束搜索
    • 10.11 注意力机制
    • 10.12 机器翻译

持续更新中......

 

 

你可能感兴趣的:(Tensorflow,深度学习,Python)