我们会发现,按照前面的构造函数形式创建类,不仅仅和编写普通的函数过于相似
,而且代码并不容易理解
。
class
关键字来直接定义类;语法糖
而已;类的概念和继承关系
;那么,如何使用class来定义一个类呢?
// 方式一 类声明
class Person {
}
// 方式二 类表达式
var Student = class {
}
我们来研究一下类的一些特性:
// function定义类
function Person1(name, age) {
this.name = name
this.age = age
}
Person1.prototype.running = function() {}
Person1.prototype.eating = function() {}
var p1 = new Person1("why", 18)
console.log(p1.__proto__ === Person1.prototype)
console.log(Person1.prototype.constructor)
console.log(typeof Person1) // function
// 不同点: 作为普通函数去调用
Person1("abc", 100)
// class定义类
class Person2 {
constructor(name, age) {
this.name = name
this.age = age
}
running() {}
eating() {}
}
var p2 = new Person2("kobe", 30)
console.log(p2.__proto__ === Person2.prototype)
console.log(Person2.prototype.constructor)
console.log(typeof Person2)
// 不同点: class定义的类, 不能作为一个普通的函数进行调用
Person2("cba", 0)
如果我们希望在创建对象的时候给类传递一些参数
,这个时候应该如何做呢?
constructor
;抛出异常
;当我们通过new关键字操作类的时候,会调用这个constructor函数
,并且执行如下操作:
在内存中创建一个新的对象(空对象);
这个对象内部的[[prototype]]
属性会被赋值为该类的prototype属性;
构造函数内部的this,会指向创建出来的新对象;
执行构造函数的内部代码(函数体代码);
如果构造函数没有返回非空对象,则返回创建出来的新对象;
class Person {
constructor(name, age) {
this.name = name
this.age = age
}
}
在上面我们定义的属性都是直接放到了this上,也就意味着它是放到了创建出来的新对象中:
放到原型
上的,这样可以被多个实例来共享
;class Person {
constructor(name, age) {
this.name = name
this.age = age
}
run(){
console.log(this.name + " running~")
}
}
我们之前讲对象的属性描述符时有讲过对象可以添加setter
和getter
函数的,那么类也是可以的:
class Student {
constructor(name, age) {
this._name = name
this._age = age
}
set name(name) {
this._name = name
}
get name() {
return this._name
}
}
var s = new Student("abc", 123)
console.log(s.name)
扩展回顾:对象的访问器方法
// 针对对象
// 方式一: 描述符
// var obj = {
// _name: "why"
// }
// Object.defineProperty(obj, "name", {
// configurable: true,
// enumerable: true,
// set: function() {
// },
// get: function() {
// }
// })
// 方式二: 直接在对象定义访问器
// 监听_name什么时候被访问, 什么设置新的值
var obj = {
_name: "why",
// setter方法
set name(value) {
this._name = value
},
// getter方法
get name() {
return this._name
}
}
obj.name = "kobe"
console.log(obj.name)
访问器的应用场景
// 2.访问器的应用场景
class Rectangle {
constructor(x, y, width, height) {
this.x = x
this.y = y
this.width = width
this.height = height
}
get position() {
return { x: this.x, y: this.y }
}
get size() {
return { width: this.width, height: this.height }
}
}
var rect1 = new Rectangle(10, 20, 100, 200)
console.log(rect1.position)
console.log(rect1.size)
静态方法通常用于定义直接使用类
来执行的方法,不需要有类的实例,使用static
关键字来定义:
// function Person() {}
// // 实例方法
// Person.prototype.running = function() {}
// // 类方法
// Person.randomPerson = function() {}
// var p1 = new Person()
// p1.running()
// Person.randomPerson()
// class定义的类
var names = ["abc", "cba", "nba", "mba"]
class Person {
constructor(name, age) {
this.name = name
this.age = age
}
// 实例方法
running() {
console.log(this.name + " running~")
}
eating() {}
// 类方法(静态方法)
static randomPerson() {
console.log(this)
var randomName = names[Math.floor(Math.random() * names.length)]
return new this(randomName, Math.floor(Math.random() * 100))
}
}
var p1 = new Person()
p1.running()
p1.eating()
var randomPerson = Person.randomPerson()
console.log(randomPerson)
前面我们花了很大的篇幅讨论了在ES5中实现继承的方案,虽然最终实现了相对满意的继承机制,但是过程却依然是非常繁琐的。
在ES6中新增了使用extends
关键字,可以方便的帮助我们实现继承:
class Person {}
class Student extends Person {}
示例代码
// 定义父类
class Person {
constructor(name, age) {
this.name = name
this.age = age
}
running() {
console.log("running~")
}
eating() {
console.log("eating~")
}
}
class Student extends Person {
constructor(name, age, sno, score) {
// this.name = name
// this.age = age
super(name, age)
this.sno = sno
this.score = score
}
// running() {
// console.log("running~")
// }
// eating() {
// console.log("eating~")
// }
studying() {
console.log("studying~")
}
}
var stu1 = new Student("why", 18, 111, 100)
stu1.running()
stu1.eating()
stu1.studying()
class Teacher extends Person {
constructor(name, age, title) {
// this.name = name
// this.age = age
super(name, age)
this.title = title
}
// running() {
// console.log("running~")
// }
// eating() {
// console.log("eating~")
// }
teaching() {
console.log("teaching~")
}
}
我们会发现在上面的代码中我使用了一个super
关键字,这个super关键字有不同的使用方式:
构造函数
、实例方法
、静态方法
;class Animal {
running() {
console.log("running")
}
eating() {
console.log("eating")
}
static sleep() {
console.log("static animal sleep")
}
}
class Dog extends Animal {
// 子类如果对于父类的方法实现不满足(继承过来的方法)
// 重新实现称之为重写(父类方法的重写)
running() {
console.log("dog四条腿")
// 调用父类的方法
super.running()
// console.log("running~")
// console.log("dog四条腿running~")
}
static sleep() {
console.log("趴着")
super.sleep()
}
}
var dog = new Dog()
dog.running()
dog.eating()
Dog.sleep()
我们也可以让我们的类继承自内置类,比如Array:
// 1.创建一个新的类, 继承自Array进行扩展
class HYArray extends Array {
get lastItem() {
return this[this.length - 1]
}
get firstItem() {
return this[0]
}
}
var arr = new HYArray(10, 20, 30)
console.log(arr)
console.log(arr.length)
console.log(arr[0])
console.log(arr.lastItem)
console.log(arr.firstItem)
// 2.直接对Array进行扩展
Array.prototype.lastItem = function() {
return this[this.length - 1]
}
var arr = new Array(10, 20, 30)
console.log(arr.__proto__ === Array.prototype)
console.log(arr.lastItem())
// 函数apply/call/bind方法 -> Function.prototype
JavaScript的类只支持单继承
:也就是只能有一个父类
那么在开发中我们我们需要在一个类中添加更多相似的功能时,应该如何来做呢?
这个时候我们可以使用混入(mixin);
// JavaScript只支持单继承(不支持多继承)
function mixinAnimal(BaseClass) {
return class extends BaseClass {
running() {
console.log("running~")
}
}
}
function mixinRunner(BaseClass) {
return class extends BaseClass {
flying() {
console.log("flying~")
}
}
}
class Bird {
eating() {
console.log("eating~")
}
}
// var NewBird = mixinRunner(mixinAnimal(Bird))
class NewBird extends mixinRunner(mixinAnimal(Bird)) {
}
var bird = new NewBird()
bird.flying()
bird.running()
bird.eating()
ES6的代码
class Person {
constructor(name, age) {
this.name = name
this.age = age
}
running() {}
eating() {}
static randomPerson() {}
}
var p1 = new Person()
ES5的代码
"use strict";
function _classCallCheck(instance, Constructor) {
if (!(instance instanceof Constructor)) {
throw new TypeError("Cannot call a class as a function");
}
}
function _defineProperties(target, props) {
for (var i = 0; i < props.length; i++) {
var descriptor = props[i];
descriptor.enumerable = descriptor.enumerable || false;
descriptor.configurable = true;
if ("value" in descriptor) descriptor.writable = true;
Object.defineProperty(target, descriptor.key, descriptor);
}
}
function _createClass(Constructor, protoProps, staticProps) {
if (protoProps) _defineProperties(Constructor.prototype, protoProps);
if (staticProps) _defineProperties(Constructor, staticProps);
Object.defineProperty(Constructor, "prototype", { writable: false });
return Constructor;
}
// 纯函数: 相同输入一定产生相同的输出, 并且不会产生副作用
var Person = /*#__PURE__*/ (function () {
debugger
function Person(name, age) {
_classCallCheck(this, Person);
this.name = name;
this.age = age;
}
_createClass(
Person,
[
{
key: "running",
value: function running() {}
},
{
key: "eating",
value: function eating() {}
}
],
[
{
key: "randomPerson",
value: function randomPerson() {}
}
]
);
return Person;
})();
var p1 = new Person("why", 18)
ES6的代码
class Person {
constructor(name, age) {
this.name = name
this.age = age
}
running() {}
eating() {}
static randomPerson() {}
}
class Student extends Person {
constructor(name, age, sno, score) {
super(name, age)
this.sno = sno
this.score = score
}
studying() {}
static randomStudent() {}
}
var stu = new Student()
ES5的代码
"use strict";
function _typeof(obj) {
"@babel/helpers - typeof";
return (
(_typeof =
"function" == typeof Symbol && "symbol" == typeof Symbol.iterator
? function (obj) {
return typeof obj;
}
: function (obj) {
return obj &&
"function" == typeof Symbol &&
obj.constructor === Symbol &&
obj !== Symbol.prototype
? "symbol"
: typeof obj;
}),
_typeof(obj)
);
}
function _inherits(subClass, superClass) {
if (typeof superClass !== "function" && superClass !== null) {
throw new TypeError("Super expression must either be null or a function");
}
subClass.prototype = Object.create(superClass && superClass.prototype, {
constructor: { value: subClass, writable: true, configurable: true }
});
Object.defineProperty(subClass, "prototype", { writable: false });
if (superClass) _setPrototypeOf(subClass, superClass);
}
function _setPrototypeOf(o, p) {
_setPrototypeOf = Object.setPrototypeOf
? Object.setPrototypeOf.bind()
: function _setPrototypeOf(o, p) {
o.__proto__ = p;
return o;
};
return _setPrototypeOf(o, p);
}
function _createSuper(Derived) {
var hasNativeReflectConstruct = _isNativeReflectConstruct();
return function _createSuperInternal() {
var Super = _getPrototypeOf(Derived),
result;
if (hasNativeReflectConstruct) {
var NewTarget = _getPrototypeOf(this).constructor;
result = Reflect.construct(Super, arguments, NewTarget);
} else {
result = Super.apply(this, arguments);
}
return _possibleConstructorReturn(this, result);
};
}
function _possibleConstructorReturn(self, call) {
if (call && (_typeof(call) === "object" || typeof call === "function")) {
return call;
} else if (call !== void 0) {
throw new TypeError(
"Derived constructors may only return object or undefined"
);
}
return _assertThisInitialized(self);
}
function _assertThisInitialized(self) {
if (self === void 0) {
throw new ReferenceError(
"this hasn't been initialised - super() hasn't been called"
);
}
return self;
}
function _isNativeReflectConstruct() {
if (typeof Reflect === "undefined" || !Reflect.construct) return false;
if (Reflect.construct.sham) return false;
if (typeof Proxy === "function") return true;
try {
Boolean.prototype.valueOf.call(
Reflect.construct(Boolean, [], function () {})
);
return true;
} catch (e) {
return false;
}
}
function _getPrototypeOf(o) {
_getPrototypeOf = Object.setPrototypeOf
? Object.getPrototypeOf.bind()
: function _getPrototypeOf(o) {
return o.__proto__ || Object.getPrototypeOf(o);
};
return _getPrototypeOf(o);
}
function _classCallCheck(instance, Constructor) {
if (!(instance instanceof Constructor)) {
throw new TypeError("Cannot call a class as a function");
}
}
function _defineProperties(target, props) {
for (var i = 0; i < props.length; i++) {
var descriptor = props[i];
descriptor.enumerable = descriptor.enumerable || false;
descriptor.configurable = true;
if ("value" in descriptor) descriptor.writable = true;
Object.defineProperty(target, descriptor.key, descriptor);
}
}
function _createClass(Constructor, protoProps, staticProps) {
if (protoProps) _defineProperties(Constructor.prototype, protoProps);
if (staticProps) _defineProperties(Constructor, staticProps);
Object.defineProperty(Constructor, "prototype", { writable: false });
return Constructor;
}
var Person = /*#__PURE__*/ (function () {
function Person(name, age) {
_classCallCheck(this, Person);
this.name = name;
this.age = age;
}
_createClass(
Person,
[
{
key: "running",
value: function running() {}
},
{
key: "eating",
value: function eating() {}
}
],
[
{
key: "randomPerson",
value: function randomPerson() {}
}
]
);
return Person;
})();
function inherit(SubType, SuperType) {
SubType.prototype = Object.create(SuperType.prototype)
SubType.prototype.constructor = SubType
}
var Student = /*#__PURE__*/ (function (_Person) {
_inherits(Student, _Person);
var _super = _createSuper(Student);
function Student(name, age, sno, score) {
var _this;
_classCallCheck(this, Student);
_this = _super.call(this, name, age);
_this.sno = sno;
_this.score = score;
return _this;
}
_createClass(
Student,
[
{
key: "studying",
value: function studying() {}
}
],
[
{
key: "randomStudent",
value: function randomStudent() {}
}
]
);
return Student;
})(Person);
var stu = new Student("why", 18, 111, 100);
面向对象的三大特性:封装、继承、多态。
维基百科对多态的定义:多态(英语:polymorphism)指为不同数据类型
的实体提供统一的接口
,或使用一个单一的符号来表示多个不同的类型。
非常的抽象,个人的总结:不同的数据类型进行同一个操作,表现出不同的行为,就是多态的体现。
那么从上面的定义来看,JavaScript是一定存在多态的。
// 多态的表现: JS到处都是多态
function sum(a1, a2) {
return a1 + a2
}
sum(20, 30)
sum("abc", "cba")
// 多态的表现
var foo = 123
foo = "Hello World"
console.log(foo.split())
foo = {
running: function() {}
}
foo.running()
foo = []
console.log(foo.length)