Hadoop3教程(二十五):Yarn的多队列调度器使用案例

文章目录

  • (136)生产环境多队列创建&好处
  • (137)容量调度器多队列提交案例
    • 如何创建多个队列
    • 如何向指定队列提交任务
  • (138)容量调度器任务优先级
  • (139)公平调度器案例
  • 参考文献

(136)生产环境多队列创建&好处

生产环境下怎么创建队列?

  • 调度器默认只会开一个default队列,这个肯定是不满足生产要求的;
  • 可以按照框架来划分队列。比如说hive/spark/flink的任务分别放在不同的队列里,不过这么做的效率不高,企业用的不是很多。
  • 按照业务模块来划分队列。比如说登录注册的业务,单独一个队列,购物车单独一个队列,下单功能单独一个队列,等等;

创建多队列的好处?

  • 担心单一程序耗尽集群所有资源;
  • 实现任务的降级使用。特殊时期可以保证重要的队列资源更充足。比如说双十一的时候,就给下单的那个队列,多补充资源。

降级怎么理解呢,就是队列之间区分优先级,资源的分配是按照队列所属的业务的优先级来进行的。

(137)容量调度器多队列提交案例

仅做了解。

需求1:default队列占总内存的40%,最大资源容量占总资源60%,hive队列占总内存的60%,最大资源容量占总资源80%。

需求2:配置队列优先级。

如何创建多个队列

接下来就需要在capacity-scheduler.xml中配置容量调度器的各项参数。直接抄教程的示例了:


<property>
    <name>yarn.scheduler.capacity.root.queuesname>
    <value>default,hivevalue>
    <description>
      The queues at the this level (root is the root queue).
    description>
property>


<property>
    <name>yarn.scheduler.capacity.root.default.capacityname>
    <value>40value>
property>


<property>
    <name>yarn.scheduler.capacity.root.default.maximum-capacityname>
    <value>60value>
property>
(2)为新加队列添加必要属性:

<property>
    <name>yarn.scheduler.capacity.root.hive.capacityname>
    <value>60value>
property>


<property>
    <name>yarn.scheduler.capacity.root.hive.user-limit-factorname>
    <value>1value>
property>


<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-capacityname>
    <value>80value>
property>


<property>
    <name>yarn.scheduler.capacity.root.hive.statename>
    <value>RUNNINGvalue>
property>


<property>
    <name>yarn.scheduler.capacity.root.hive.acl_submit_applicationsname>
    <value>*value>
property>


<property>
    <name>yarn.scheduler.capacity.root.hive.acl_administer_queuename>
    <value>*value>
property>


<property>
    <name>yarn.scheduler.capacity.root.hive.acl_application_max_priorityname>
    <value>*value>
property>




<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-application-lifetimename>
    <value>-1value>
property>


<property>
    <name>yarn.scheduler.capacity.root.hive.default-application-lifetimename>
    <value>-1value>
property>

如果任务超过了设定的超时时间,那么到时候就会被直接杀死,-1表示不设置。

参数设置完成后,重启yarn,或者是执行yarn rmadmin -refreshQueues刷新队列配置。就可以看到两条队列了。

Hadoop3教程(二十五):Yarn的多队列调度器使用案例_第1张图片

如何向指定队列提交任务

那如何向指定队列提交任务呢?

以向hive队列提交任务为例,就是执行

hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount -D mapreduce.job.queuename=hive /input /output

就是加入了-D参数,指定了队列名。

如果不指定队列名的话,默认是都提交到default队列。

除了上述方式之外,也可以在jar包代码里写死要提交的队列名,如:

public class WcDrvier {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        Configuration conf = new Configuration();

        conf.set("mapreduce.job.queuename","hive");

        //1. 获取一个Job实例
        Job job = Job.getInstance(conf);

        。。。 。。。

        //6. 提交Job
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}

这样,这个任务在提交的时候,就会直接提交到hive队列。

(138)容量调度器任务优先级

资源紧张的时候,高优先级的任务将先获取到资源。

默认情况下,Yarn将所有任务的优先级限制为0,如果想使用任务的优先级功能,则需要做一些设置。

首先修改yarn-site.xml文件,增加以下参数:

<property>
    <name>yarn.cluster.max-application-priorityname>
    <value>5value>
property>

分发配置,并重启Yarn:

[atguigu@hadoop102 hadoop]$ xsync yarn-site.xml
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

然后通过连续提交下面任务,来模拟资源紧张的环境:

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi 5 2000000

Hadoop3教程(二十五):Yarn的多队列调度器使用案例_第2张图片

再次提交高优先级任务:

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi  -D mapreduce.job.priority=5 5 2000000

通过-D设置了新提交的任务优先级是5,高于当前在运行的所有任务,这个任务马上就获取到了资源:
Hadoop3教程(二十五):Yarn的多队列调度器使用案例_第3张图片
上面的例子是在任务提交时设置任务的优先级,也可以通过以下命令修改正在执行的任务的优先级

yarn application -appID  -updatePriority 优先级

(139)公平调度器案例

公平调度器,中大型公司主要使用的。

需求:在默认的default队列基础之上,再创建两个队列,分别是test和atguigu(以用户所属组命名)。期望实现下面效果:

  • 提交任务时若指定队列,则提交至指定队列运行;
  • 提交任务时未指定队列,test用户提交的任务到test队列运行,atguigu用户提交的任务到atguigu队列运行

公平调度器的配置涉及到两个文件,一个是yarn-site.xml,另一个是公平调度器队列分配文件fair-scheduler.xml(文件名可自定义)。

(1)配置文件参考资料:

https://hadoop.apache.org/docs/r3.1.3/hadoop-yarn/hadoop-yarn-site/FairScheduler.html

(2)任务队列放置规则参考资料:

https://blog.cloudera.com/untangling-apache-hadoop-yarn-part-4-fair-scheduler-queue-basics/

修改yarn-site.xml文件,如下:

<property>
    <name>yarn.resourcemanager.scheduler.classname>
    <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairSchedulervalue>
    <description>配置使用公平调度器description>
property>

<property>
    <name>yarn.scheduler.fair.allocation.filename>
    <value>/opt/module/hadoop-3.1.3/etc/hadoop/fair-scheduler.xmlvalue>
    <description>指明公平调度器队列分配配置文件description>
property>

<property>
    <name>yarn.scheduler.fair.preemptionname>
    <value>falsevalue>
    <description>禁止队列间资源抢占description>
property>

"禁止队列间资源抢占"这个功能就是之前提到过的,不同队列间的资源借调,这里是直接关掉了。

创建并配置fair-scheduler.xml:


<allocations>
  
  <queueMaxAMShareDefault>0.5queueMaxAMShareDefault>
  
  <queueMaxResourcesDefault>4096mb,4vcoresqueueMaxResourcesDefault>

    
  
  <queue name="test">
    
    <minResources>2048mb,2vcoresminResources>
    
    <maxResources>4096mb,4vcoresmaxResources>
    
    <maxRunningApps>4maxRunningApps>
    
    <maxAMShare>0.5maxAMShare>
    
    <weight>1.0weight>
    
    <schedulingPolicy>fairschedulingPolicy>
  queue>
    
    
  
  <queue name="atguigu" type="parent">
    
    <minResources>2048mb,2vcoresminResources>
    
    <maxResources>4096mb,4vcoresmaxResources>
    
    <maxRunningApps>4maxRunningApps>
    
    <maxAMShare>0.5maxAMShare>
    
    <weight>1.0weight>
    
    <schedulingPolicy>fairschedulingPolicy>
  queue>

  
  <queuePlacementPolicy>
    
    <rule name="specified" create="false"/>
    
    <rule name="nestedUserQueue" create="true">
        <rule name="primaryGroup" create="false"/>
    rule>
    
    <rule name="reject" />
  queuePlacementPolicy>
allocations>

接着分发配置并重启yarn:

[atguigu@hadoop102 hadoop]$ xsync yarn-site.xml
[atguigu@hadoop102 hadoop]$ xsync fair-scheduler.xml

[atguigu@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

接下来可以测试提交任务,就不介绍了。

参考文献

  1. 【尚硅谷大数据Hadoop教程,hadoop3.x搭建到集群调优,百万播放】

你可能感兴趣的:(大数据技术,大数据,hadoop,yarn)