Flink-CDC 基础应用

文章目录

  • 一、CDC 简介
    • 1. 什么是CDC
    • 2. CDC的种类
    • 3. Flink-CDC
  • 二、Flink CDC 案例实操
    • 1. DataStream 方式的应用
      • 1.1 导入依赖
      • 1.2 编写代码
      • 1.3 案例测试
    • 2. FlinkSQL 方式的应用
    • 3. 自定义反序列化器


一、CDC 简介

1. 什么是CDC

CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库
的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录
下来,写入到消息中间件中以供其他服务进行订阅及消费。

2. CDC的种类

CDC 主要分为基于查询和基于 Binlog 两种方式:
Flink-CDC 基础应用_第1张图片

3. Flink-CDC

Flink 社区开发了 flink-cdc-connectors 组件(基于Debezium写的),这是一个可以直接从 MySQL、PostgreSQL等数据库直接读取全量数据和增量变更数据的 source 组件。
目前也已开源,开源地址:https://github.com/ververica/flink-cdc-connectors

项目中为什么不适用Canal?FlinkCDC的好处在哪?
如果使用Canal,那么他的数据流程可能是:MySQL —> Canal —> Kafka —>Flink;
而使用FlinkCDC的话可以是:MySQL —>FlinkCDC —>Flink;
省去了消息中间件,流程更加高效了(分层需要的话,会在FlinkCDC之后加上Kafka)

二、Flink CDC 案例实操

1. DataStream 方式的应用

1.1 导入依赖

<properties>
        <flink-version>1.13.0</flink-version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink-version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>${flink-version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>${flink-version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.3</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.49</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.12</artifactId>
            <version>${flink-version}</version>
        </dependency>

        <dependency>
            <groupId>com.ververica</groupId>
            <artifactId>flink-connector-mysql-cdc</artifactId>
            <version>2.0.0</version>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.75</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

1.2 编写代码

import com.ververica.cdc.connectors.mysql.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.DebeziumSourceFunction;
import com.ververica.cdc.debezium.StringDebeziumDeserializationSchema;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FlinkCDC {

    public static void main(String[] args) throws Exception {

        //1.获取Flink 执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

		//2.Flink-CDC 将读取 binlog 的位置信息以状态的方式保存在 CK,
		//  如果想要做到断点续传,需要从 Checkpoint 或者 Savepoint 启动程序
		//2.1 开启 Checkpoint,每隔 5 秒钟做一次 CK
		env.enableCheckpointing(5000L);
		//2.2 指定 CK 的一致性语义
		env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
		//2.3 设置任务关闭的时候保留最后一次 CK 数据
	env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckp
ointCleanup.RETAIN_ON_CANCELLATION);
		//2.4 指定从 CK 自动重启策略
		env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 2000L));
		//2.5 设置状态后端
		env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/flinkCDC"));
		//2.6 设置访问 HDFS 的用户名
		System.setProperty("HADOOP_USER_NAME", "atguigu");
			
        //3.通过FlinkCDC构建SourceFunction
        DebeziumSourceFunction<String> sourceFunction = MySqlSource.<String>builder()
                .hostname("hadoop102")
                .port(3306)
                .username("root")
                .password("000000")
                .databaseList("cdc_test")
                //可选配置项,如果不指定该参数,则会读取上一个配置下的所有表的数据,
				//注意:指定的时候需要使用"db.table"的方式
                .tableList("cdc_test.user_info")
                .deserializer(new StringDebeziumDeserializationSchema())
                .startupOptions(StartupOptions.initial())
                .build();
        //4.使用 CDC Source 从 MySQL 读取数据
        DataStreamSource<String> dataStreamSource = env.addSource(sourceFunction);

        //5.数据打印
        dataStreamSource.print();

        //6.启动任务
        env.execute("FlinkCDC");
    }
}

1.3 案例测试

(1)打包并上传至 Linux
(2)开启 MySQL Binlog 并重启 MySQL
(3)启动 Flink 集群

[atguigu@hadoop102 flink-standalone]$ bin/start-cluster.sh

(4)启动 HDFS 集群

[atguigu@hadoop102 flink-standalone]$ start-dfs.sh

(5)启动程序

[atguigu@hadoop102 flink-standalone]$ bin/flink run -c com.atguigu.FlinkCDC flink-1.0-
SNAPSHOT-jar-with-dependencies.jar

(6)在 MySQL 的 gmall-flink.z_user_info 表中添加、修改或者删除数据
(7)给当前的 Flink 程序创建 Savepoint

[atguigu@hadoop102 flink-standalone]$ bin/flink savepoint JobId
hdfs://hadoop102:8020/flink/save

(8)关闭程序以后从 Savepoint 重启程序

[atguigu@hadoop102 flink-standalone]$ bin/flink run -s hdfs://hadoop102:8020/flink/save/... -c
com.atguigu.FlinkCDC flink-1.0-SNAPSHOT-jar-with-dependencies.jar

2. FlinkSQL 方式的应用

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

public class FlinkSQLCDC {

    public static void main(String[] args) throws Exception {

        //1.获取执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

        //2.使用FLINKSQL DDL模式构建CDC 表
        tableEnv.executeSql("CREATE TABLE user_info ( " +
                " id STRING primary key, " +
                " name STRING, " +
                " sex STRING " +
                ") WITH ( " +
                " 'connector' = 'mysql-cdc', " +
                " 'scan.startup.mode' = 'latest-offset', " +
                " 'hostname' = 'hadoop102', " +
                " 'port' = '3306', " +
                " 'username' = 'root', " +
                " 'password' = '000000', " +
                " 'database-name' = 'cdc_test', " +
                " 'table-name' = 'user_info' " +
                ")");

        //3.查询数据并转换为流输出
        Table table = tableEnv.sqlQuery("select * from user_info");
        DataStream<Tuple2<Boolean, Row>> retractStream = tableEnv.toRetractStream(table, Row.class);
        retractStream.print();

        //4.启动
        env.execute("FlinkSQLCDC");

    }

}

3. 自定义反序列化器

import com.atguigu.func.CustomerDeserializationSchema;
import com.ververica.cdc.connectors.mysql.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.DebeziumSourceFunction;
import com.ververica.cdc.debezium.StringDebeziumDeserializationSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FlinkCDC2 {

    public static void main(String[] args) throws Exception {

        //1.获取Flink 执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //1.1 开启CK
//        env.enableCheckpointing(5000);
//        env.getCheckpointConfig().setCheckpointTimeout(10000);
//        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
//
//        env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/cdc-test/ck"));

        //2.通过FlinkCDC构建SourceFunction
        DebeziumSourceFunction<String> sourceFunction = MySqlSource.<String>builder()
                .hostname("hadoop102")
                .port(3306)
                .username("root")
                .password("000000")
                .databaseList("cdc_test")
                .tableList("cdc_test.user_info")
				//引用反序列化器
                .deserializer(new CustomerDeserializationSchema())
                .startupOptions(StartupOptions.initial())
                .build();
        DataStreamSource<String> dataStreamSource = env.addSource(sourceFunction);

        //3.数据打印
        dataStreamSource.print();

        //4.启动任务
        env.execute("FlinkCDC");

    }

}

反序列化器实现逻辑

import com.alibaba.fastjson.JSONObject;
import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
import io.debezium.data.Envelope;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;

import java.util.List;

public class CustomerDeserializationSchema implements DebeziumDeserializationSchema<String> {


    /**
     * {
     * "db":"",
     * "tableName":"",
     * "before":{"id":"1001","name":""...},
     * "after":{"id":"1001","name":""...},
     * "op":""
     * }
     */
    @Override
    public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception {

        //创建JSON对象用于封装结果数据
        JSONObject result = new JSONObject();

        //获取库名&表名
        String topic = sourceRecord.topic();
        String[] fields = topic.split("\\.");
        result.put("db", fields[1]);
        result.put("tableName", fields[2]);

        //获取before数据
        Struct value = (Struct) sourceRecord.value();
        Struct before = value.getStruct("before");
        JSONObject beforeJson = new JSONObject();
        if (before != null) {
            //获取列信息
            Schema schema = before.schema();
            List<Field> fieldList = schema.fields();

            for (Field field : fieldList) {
                beforeJson.put(field.name(), before.get(field));
            }
        }
        result.put("before", beforeJson);

        //获取after数据
        Struct after = value.getStruct("after");
        JSONObject afterJson = new JSONObject();
        if (after != null) {
            //获取列信息
            Schema schema = after.schema();
            List<Field> fieldList = schema.fields();

            for (Field field : fieldList) {
                afterJson.put(field.name(), after.get(field));
            }
        }
        result.put("after", afterJson);

        //获取操作类型
        Envelope.Operation operation = Envelope.operationFor(sourceRecord);
        result.put("op", operation);

        //输出数据
        collector.collect(result.toJSONString());

    }

    @Override
    public TypeInformation<String> getProducedType() {
        return BasicTypeInfo.STRING_TYPE_INFO;
    }
}

你可能感兴趣的:(Flink,flink,大数据,java)