本文大量内容系转载自以下文章,有删改,并参考其他文档资料加入了一些内容:
转载仅为方便学习查看,一切权利属于原作者,本人只是做了整理和排版,如果带来不便请联系我删除。
性能问题和Bug不同,后者的分析和解决思路更清晰,很多时候从应用日志(文中的应用指分布式服务下的单个节点)即可直接找到问题根源,而性能问题,其排查思路更为复杂一些。
对应用进行性能优化,是一个系统性的工程,对工程师的技术广度和技术深度都有所要求。一个简单的应用,它不仅包含了应用代码本身,还和容器(虚拟机)、操作系统、存储、网络、文件系统等紧密相关,线上应用一旦出现了性能问题,需要我们从多方面去考虑。
与此同时,除了一些低级的代码逻辑引发的性能问题外,很多性能问题隐藏的较深,排查起来会比较困难,需要我们对应用的各个子模块、应用所使用的框架和组件的原理有所了解,同时掌握一定的性能优化工具和经验。
本文总结了我们在进行性能优化时常用的一些工具及技巧,目的是希望通过一个全面的视角,去感知性能优化的整体脉络。本文主要分为下面三个部分:
约定:
本文中提到的线程、堆、垃圾回收等名词,如无特别说明,指的是 Java 应用中的相关概念。
前面提到过,应用出现性能问题和应用存在缺陷是不一样的,后者大多数是由于代码的质量问题导致,会导致应用功能性的缺失或出现风险,一经发现,会被及时修复。
而性能问题,可能是由多方面的因素共同作用的结果:代码质量一般、业务发展太快、应用架构设计不合理等,这些问题处理起来一般耗时较长、分析链路复杂,大家都不愿意干,因此可能会被一些临时性的补救手段所掩盖,如:系统水位高或者单机的线程池队列爆炸,那就集群扩容增加机器;内存占用高/高峰时段 OOM,那就重启分分钟解决…
临时性的补救措施只是在给应用埋雷,同时也只能解决部分问题。譬如,在很多场景下,加机器也并不能解决应用的性能问题,如对时延比较敏感的一些应用必须把单机的性能优化到极致,与此同时,加机器这种方式也造成了资源的浪费,长期来看是得不偿失的。对应用进行合理的性能优化,可在应用稳定性、成本核算获得很大的收益。
上面我们阐述了进行性能优化的必要性。假设现在我们的应用已经有了性能问题(eg. CPU 水位比较高),准备开始进行优化工作了,在这个过程中,潜在的痛点会有哪些呢?下面列出一些较为常见的:
在性能优化这个领域,并没有一个严格的流程定义,但是对于绝大多数的优化场景,我们可以将其过程抽象为下面四个步骤。
在上述通用流程的四个步骤当中,步骤2和4我们会在接下来两个部分重点进行介绍。首先我们来看一下,在准备阶段和测试阶段,我们需要做一些什么。
首先,需要对我们进行调优的对象进行详尽的了解,所谓知己知彼,百战不殆。
其次,我们需要获取基准数据,然后结合基准数据和当前的一些业务指标,确定此次性能优化的最终目标。
使用基准测试工具获取系统细粒度指标
可以使用若干 Linux 基准测试工具(eg. jmeter、ab、loadrunnerwrk、wrk等),得到文件系统、磁盘 I/O、网络等的性能报告。
除此之外,类似 GC、Web 服务器、网卡流量等信息,如有必要也是需要了解记录的;
通过压测工具或者压测平台(如果有的话)对进行压测获取宏观业务指标
譬如:响应时间、吞吐量、TPS、QPS、消费速率(对于有 MQ 的应用)等。压力测试也可以省略,可以结合当前的实际业务和过往的监控数据,去统计当前的一些核心业务指标,如午高峰的服务 TPS。
进入到这一阶段,说明我们已经初步确定了应用性能瓶颈的所在,而且已经进行初步的调优了。检测我们调优是否有效的方式,就是在仿真的条件下,对应用进行压力测试。注意:由于 Java 有 JIT(just-in-time compilation)过程,因此压力测试时可能需要进行前期预热。
如果压力测试的结果符合了预期的调优目标,或者与基准数据相比,有很大的改善,则我们可以继续通过工具定位下一个瓶颈点,否则,则需要暂时排除这个瓶颈点,继续寻找下一个变量。
在进行性能优化时,了解下面这些注意事项可以让我们少走一些弯路。
性能优化其实就是找出应用存在性能瓶颈点,然后设法通过一些调优手段去缓解。
性能瓶颈点的定位是较困难的,快速、直接地定位到瓶颈点,需要具备下面两个条件:
工欲善其事,必先利其器,我们该如何选择合适的工具呢?不同的优化场景下,又该选择那些工具呢?
首选,我们来看一下大名鼎鼎的「性能工具(Linux Performance Tools-full)图」,想必很多工程师都知道,它出自系统性能专家 Brendan Gregg。该图从 Linux 内核的各个子系统出发,列出了我们在对各个子系统进行性能分析时,可使用的工具,涵盖了监测、分析、调优等性能优化的方方面面。除了这张全景图之外,Brendan Gregg 还单独提供了基准测试工具(Linux Performance Benchmark Tools)图、性能监测工具(Linux Performance Observability Tools)图等,更详细的内容请参考 Brendan Gregg 的网站说明。
图片来源:
http://www.brendangregg.com/linuxperf.html?spm=ata.13261165.0.0.34646b44KX9rGc
上面这张图非常经典,是我们做性能优化时非常好的参考资料,但事实上,我们在实际运用的时候,会发现可能它并不是最合适的,原因主要有下面两点:
鉴于上面若干痛点,下面给出了一张更为实用的「性能优化工具图谱」,该图分别从系统层、应用层(含组件层)的角度出发,列举了我们在分析性能问题时首先需要关注的各项指标**(其中?
标注的是最需要关注的)**,这些点是最有可能出现性能瓶颈的地方。
需要注意的是,一些低频的指标或工具,在图中并没有列出来,如 CPU 中断、索引节点使用、I/O事件跟踪等,这些低频点的排查思路较复杂,一般遇到的机会也不多,在这里我们聚焦最常见的一些就可以了。
对比上面的性能工具(Linux Performance Tools-full)图,下图的优势在于:把具体的工具同性能指标结合了起来,同时从不同的层次去描述了性能瓶颈点的分布,实用性和可操作性更强一些。系统层的工具分为CPU、内存、磁盘(含文件系统)、网络四个部分,工具集同性能工具(Linux Performance Tools-full)图中的工具基本一致。组件层和应用层中的工具构成为:JDK 提供的一些工具 + Trace 工具 + dump 分析工具 + Profiling 工具等。
这里就不具体介绍这些工具的具体用法了,我们可以使用 man 命令得到工具详尽的使用说明,除此之外,还有另外一个查询命令手册的方法:info。info 可以理解为 man 的详细版本,如果 man 的输出不太好理解,可以去参考 info 文档,命令太多,记不住也没必要记住。
下面介绍在不同的分析层次,我们需要关注的核心性能指标,同时,也会介绍如何初步根据这些指标,判断系统或应用是否存在性能瓶颈点。
至于瓶颈点的确认、瓶颈点的成因、调优手段,将会在下一部分展开。
和 CPU 相关的指标主要有以下几个。常用的工具有:
CPU主要关注指标:
可参考:
$ top
top - 12:20:57 up 25 days, 20:49, 2 users, load average: 0.93, 0.97, 0.79
Tasks: 51 total, 1 running, 50 sleeping, 0 stopped, 0 zombie
%Cpu(s): 1.6 us, 1.8 sy, 0.0 ni, 89.1 id, 0.1 wa, 0.0 hi, 0.1 si, 7.3 st
KiB Mem : 8388608 total, 476436 free, 5903224 used, 2008948 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 0 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
119680 admin 20 0 600908 72332 5768 S 2.3 0.9 52:32.61 obproxy
65877 root 20 0 93528 4936 2328 S 1.3 0.1 449:03.61 alisentry_cli
第一行top - 10:51:55 up 63 days, 18:30, 1 user, load average: 0.10, 0.12, 0.05
:
当前时间 10:51:55
系统运行时间 63天以前的18:30
正在登录用户数为1
load average
后的三个数字0.10, 0.12, 0.05
,依次表示过去 1 分钟、5 分钟、15 分钟的平均负载。
load average是指单位时间内,系统处于可运行状态(正在使用 CPU 或者正在等待 CPU 的进程,R 状态)和不可中断睡眠状态(D 状态)的平均进程数,也就是平均活跃进程数。
如果load average刚好等于CPU核数,那证明每个核都能得到很好的利用,如果平均负载数大于核数证明系统处于过载的状态,通常认为是超过核数的70%认为是严重过载,需要关注。还需结合1分钟平均负载,5分钟平均负载,15分钟平均负载看负载的趋势,如果1分钟负载比较高,5分钟和15分钟的平均负载都比较低,则说明是瞬间升高,需要观察。如果三个值都很高则需要关注下是否某个进程在疯狂消耗CPU或者有频繁的IO操作,也有可能是系统运行的进程太多,频繁的进程切换导致。
注意,CPU 平均负载和 CPU 使用率并没有直接关系!
第二行Tasks: 133 total, 1 running, 132 sleeping, 0 stopped, 0 zombie
总共133个进程
1个正在运行
132个休眠
0个已停止
0个位僵尸进程
僵尸进程是指子进程结束时父进程没有调用wait()/waitpid()等待子进程结束,那么就会产生僵尸进程。原因是子进程结束时并没有真正退出,而是留下一个僵尸进程的数据结构在系统进程表中,等待父进程清理。
如果父进程已经退出则会由init进程接替父进程进行处理(收尸)。由此可见,如果父进程不作为并且又不退出,就会有大量的僵尸进程,每个僵尸进程会占用进程表的一个位置(slot),如果僵尸进程太多会导致系统无法创建新的进程,因为进程表的容量是有限的。所以当zombie这个指标太大时需要引起我们的注意。
消灭僵尸进程的方法:
第三行Cpu(s): 0.1%us, 0.1%sy, 0.0%ni, 99.6%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st
主要展示cpu利用率,每一列的含义可以使用 man 查看。CPU 使用率体现了单位时间内 CPU 使用情况的统计,以百分比的方式展示。计算方式为:CPU 利用率 = 1 - (CPU 空闲时间/ CPU 总的时间)
。
需要注意的是,通过性能分析工具得到的 CPU 的利用率其实是某个采样时间内的 CPU 平均值。注:top 工具显示的的 CPU 利用率是把所有 CPU 核的数值加起来的,即 8 核 CPU 的利用率最大可以到达800%(可以用htop
等更新一些的工具代替 top)。
0.1%us
用户态占用CPU时间比例
0.1%sy
内核态占用CPU时间比例
0.0%ni
运行低优先级进程的CPU时间比例
99.6%id
空闲CPU时间比例
0.2%wa
处于IO等待的CPU时间比例
0.0%hi
处理硬中断的CPU时间比例
0.0%si
处理软中断的CPU时间比例
0.0%st
表示当前系统运行在虚拟机中的时候,虚拟机占用的CPU时间比例。
使用 vmstat 命令,可以查看到「上下文切换次数」这个指标,如下表所示,每隔1秒输出1组数据:
$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 504804 0 1967508 0 0 644 33377 0 1 2 2 88 0 9
上表的 cs(context switch) 就是每秒上下文切换的次数,按照不同场景,CPU 上下文切换还可以分为中断上下文切换、线程上下文切换和进程上下文切换三种,但是无论是哪一种,过多的上下文切换,都会把 CPU 时间消耗在寄存器、内核栈以及虚拟内存等数据的保存和恢复上,从而缩短进程真正运行的时间,导致系统的整体性能大幅下降。vmstat 的输出中 us、sy 分别用户态和内核态的 CPU 利用率,这两个值也非常具有参考意义。
vmstat 的输只给出了系统总体的上下文切换情况,要想查看每个进程的上下文切换详情(如自愿和非自愿切换),需要使用 pidstat,该命令还可以查看某个进程用户态和内核态的 CPU 利用率。
CPU 利用率
如果我们观察某段时间系统或应用进程的 CPU利用率一直很高(单个 core 超过80%),那么就值得我们警惕了。我们可以多次使用 jstack 命令 dump 应用线程栈查看热点代码,非 Java 应用可以直接使用 perf 进行 CPU 采采样,离线分析采样数据后得到 CPU 执行热点(Java 应用需要符号表进行堆栈信息映射,不能直接使用 perf得到结果)。
CPU 平均负载
平均负载高于 CPU 数量 70%,意味着系统存在瓶颈点,造成负载升高的原因有很多,在这里就不展开了。需要注意的是,通过监控系统监测平均负载的变化趋势,更容易定位问题,有时候大文件的加载等,也会导致平均负载瞬时升高。如果 1 分钟/5 分钟/15 分钟的三个值相差不大,那说明系统负载很平稳,则不用关注,如果这三个值逐渐降低,说明负载在渐渐升高,需要关注整体性能;
CPU 上下文切换
上下文切换这个指标,并没有经验值可推荐(几十到几万都有可能),这个指标值取决于系统本身的 CPU 性能,以及当前应用工作的情况。但是,如果系统或者应用的上下文切换次数出现数量级的增长,就有很大概率说明存在性能问题,如非自愿上下切换大幅度上升,说明有太多的线程在竞争 CPU。
上面这三个指标是密切相关的,如频繁的 CPU 上下文切换,可能会导致平均负载升高。如何根据这三者之间的关系进行应用调优,将在下一部分介绍。
CPU 上的的一些异动,通常也可以从线程上观测到,但需要注意的是,线程问题并不完全和 CPU 相关。与线程相关的指标,主要有下面几个(均都可以通过 JDK 自带的 jstack 工具直接或间接得到):
关于线程,可关注的异常有:
和内存相关的指标主要有以下几个,常用的分析工具有:top、free、vmstat、pidstat 以及 JDK 自带的一些工具。
使用 free 可以查看系统内存的使用情况和 Swap 分区的使用情况,top 工具可以具体到每个进程,如我们可以用使用 top 工具查看 Java 进程的常驻内存大小(RES),这两个工具结合起来,可用覆盖大多数内存指标。下面是使用 free命令的输出:
$free -h
total used free shared buff/cache available
Mem: 125G 6.8G 54G 2.5M 64G 118G
Swap: 2.0G 305M 1.7G
上述输出各列的具体含义在这里不在赘述,也比较容易理解。重点介绍下 swap 和 buff/cache 这两个指标。
Swap 的作用是把一个本地文件或者一块磁盘空间作为内存来使用,包括换出和换入两个过程。Swap 需要读写磁盘,所以性能不是很高,事实上,包括 ElasticSearch 、Hadoop 在内绝大部分 Java 应用都建议关掉 Swap,这是因为内存的成本一直在降低,同时这也和 JVM 的垃圾回收过程有关:JVM在 GC 的时候会遍历所有用到的堆的内存,如果这部分内存被 Swap 出去了,遍历的时候就会有磁盘 I/O 产生。Swap 分区的升高一般和磁盘的使用强相关,具体分析时,需要结合缓存使用情况、swappiness 阈值以及匿名页和文件页的活跃情况综合分析。
buff/cache 是缓存和缓冲区的大小。缓存(cache):是从磁盘读取的文件的或者向磁盘写文件时的临时存储数据,面向文件。使用 cachestat 可以查看整个系统缓存的读写命中情况,使用 cachetop 可以观察每个进程缓存的读写命中情况。缓冲区(buffer)是写入磁盘数据或从磁盘直接读取的数据的临时存储,面向块设备。free 命令的输出中,这两个指标是加在一起的,使用 vmstat 命令可以区分缓存和缓冲区,还可以看到 Swap 分区换入和换出的内存大小。
了解到常见的内存指标后,常见的内存问题又有哪些?总结如下:
内存相关指标异常后,分析思路是怎么样的?
举例:使用 free 发现缓存/缓冲区占用不大,排除缓存/缓冲区对内存的影响后 -> 使用 vmstat 或者 sar 观察一下各个进程内存使用变化趋势 -> 发现某个进程的内存时候用持续走高 -> 如果是 Java 应用,可以使用 jmap / VisualVM / heap dump 分析等工具观察对象内存的分配,或者通过 jstat 观察 GC 后的应用内存变化 -> 结合业务场景,定位为内存泄漏/GC参数配置不合理/业务代码异常等。
在分析和磁盘相关的问题时,通常是将其和文件系统同时考虑的,下面不再区分。和磁盘/文件系统相关的指标主要有以下几个,常用的观测工具为 iostat和 pidstat,前者适用于整个系统,后者可观察具体进程的 I/O。
使用 iostat 的输出界面如下:
$iostat -dx
Linux 3.10.0-327.ali2010.alios7.x86_64 (loginhost2.alipay.em14) 10/20/2019 _x86_64_ (32 CPU)
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util
sda 0.01 15.49 0.05 8.21 3.10 240.49 58.92 0.04 4.38 2.39 4.39 0.09 0.07
上图中 %util ,即为磁盘 I/O 利用率,同 CPU 利用率一样,这个值也可能超过 100%(存在并行 I/O);rkB/s 和 wkB/s分别表示每秒从磁盘读取和写入的数据量,即吞吐量,单位为 KB;磁盘 I/O处理时间的指标为 r_await 和 w_await 分别表示读/写请求处理完成的响应时间,svctm 表示处理 I/O 所需要的平均时间,该指标已被废弃,无实际意义。r/s + w/s 为 IOPS 指标,分别表示每秒发送给磁盘的读请求数和写请求数;aqu-sz 表示等待队列的长度。
pidstat 的输出大部分和 iostat 类似,区别在于它可以实时查看每个进程的 I/O 情况。
如何判断磁盘的指标出现了异常?
网络这个概念涵盖的范围较广,在应用层、传输层、网络层、网络接口层都有不同的指标去衡量。这里我们讨论的「网络」,特指应用层的网络,通常使用的指标如下:
一般来说,应用层的网络瓶颈有如下几类:
带宽和网络吞吐这两个指标,一般我们会关注整个应用的,通过监控系统可直接得到,如果一段时间内出现了明显的指标上升,说明存在网络性能瓶颈。对于单机,可以使用 sar 得到网络接口、进程的网络吞吐。
使用 ping 或者 hping3 可以得到是否出现网络分区、网络具体时延。对于应用,我们更关注整个链路的时延,可以通过中间件埋点后输出的 trace 日志得到链路上各个环节的时延信息。
使用 netstat、ss 和 sar 可以获取网络连接数或网络错误数。过多网络链接造成的开销是很大的,一是会占用文件描述符,二是会占用缓存,因此系统可以支撑的网络链接数是有限的。
可以看到的是,在分析 CPU、内存、磁盘等的性能指标时,有几种工具是高频出现的,如 top、vmstat、pidstat,这里稍微总结一下:
上述的很多工具,大部分是用于查看系统层指标的,在应用层,除了有 JDK 提供的一系列工具,一些商用的产品如 gceasy.io(分析 GC 日志)、fastthread.io(分析线程 dump 日志)也是不错的。
排查 Java 应用的线上异常或者分析应用代码瓶颈,可以使用阿里开源的 Arthas ,这个工具非常强大,下面简单介绍下。
Arthas 主要面向线上应用实时诊断,解决的是类似「线上应用异常了,需要在线进行分析和定位」的问题,当然,Arthas 提供的一些方法调用追踪工具,对我们排查诸如「慢查询」等问题,也是非常有帮助的。Arthas 提供的主要功能有:
需要注意的是,性能工具只是解决性能问题的手段,我们了解常用工具的一般用法即可,不要在工具学习上投入过多精力。