协程,GIL全局解释器,互斥锁,线程池,Concurrent模块

进程是资源分配的最小单位,线程是CPU调度的最小单位。每一个进程中至少有一个线程。


Python对并发编程的支持


(1)多线程:threading,利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成。
(2)多进程:multiprocessing,利用多核CPU的能力,真正的并行执行任务。
(3)异步IO:asyncio,在单线程利用CPU和IO同时执行的原理,实现函数异步执行。
(4)使用Lock对资源加锁,防止冲突访问。
(5)使用Queue实现不同线程/进程之间的数据通信,实现生产者-消费者模式。
(6)使用线程池Pool/进程池Pool,简化线程/进程的任务提交、等待结束、获取结果。
(7)使用subprocess启动外部程序的进程,并进行输入输出交互。

Python并发编程有三种方式


多线程Thread、多进程Process、多协程Coroutine。

为什么要引入并发编程?


场景1:一个网络爬虫,按顺序爬取花了1小时,采用并发下载减少到20分钟!
场景2:一个APP应用,优化前每次打开页面需要3秒,采用异步并发提升到每次200毫秒!
引入并发,就是为了提升程序运行速度。

多线程、多进程、多协程的对比

协程,GIL全局解释器,互斥锁,线程池,Concurrent模块_第1张图片

怎样根据任务选择对应技术?

 协程,GIL全局解释器,互斥锁,线程池,Concurrent模块_第2张图片

GIL全局解释器锁

        GIL全局解释器锁(Global Interpreter Lock)是一种在Python解释器中使用的机制,它的主要作用是防止同一时间内多个线程同时执行 Python 代码。

        在 Python 中,由于存在 GIL 锁的机制,因此在多线程执行 Python 代码时,同一时间只有一个线程能够占用 CPU 执行 Python 代码,其他线程将一直处于等待状态。

        这种机制有利于保证 Python 代码的稳定性和线程安全,但也带来了一定的性能损耗。因此,对于 CPU 密集型的 Python 应用程序,多线程并不能提高其运行速度。相反,对于 I/O 密集型的应用程序,多线程可以有效地提升其运行效率。

GIL步骤

在多线程环境中,Python 解释器按以下方式执行:

  1. 设置 GIL;
  2. 切换到一个线程去运行;
  3. 运行指定数量的字节码指令或者线程主动让出控制(可以调用 time.sleep(0));
  4. 把线程设置为睡眠状态;
  5. 解锁 GIL;
  6. 再次重复以上所有步骤。

在调用外部代码(如 C/C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于在这期间没有Python的字节码被运行,所以不会做线程切换)编写扩展的程序员可以主动解锁GIL。

GIL全局解释器相关背景

GIL锁就是保证在统一时刻只有一个线程执行,所有的线程必须拿到GIL锁才有执行权限

1. Python代码运行在解释器上嘛,有解释器来执行或者解释
2. Python解释器的种类:
	1、CPython  2、IPython 3、PyPy  4、Jython  5、IronPython
3. 当前市场使用的最多(95%)的解释器就是CPython解释器
4. GIL全局解释器锁是存在于CPython中
5. 结论是同一时刻只有一个线程在执行? 想避免的问题是,出现多个线程抢夺资源的情况
	比如:现在起一个线程,来回收垃圾数据,回收a=1这个变量,另外一个线程也要使用这个变量a,当垃圾回收线程还没没有把变量a回收完毕,另一个线程就来抢夺这个变量a使用。
    怎么避免的这个问题,那就是在Python这门语言设计之处,就直接在解释器上添加了一把锁,这把锁就是为了让统一时刻只有一个线程在执行,言外之意就是哪个线程想执行,就必须先拿到这把锁(GIL), 只有等到这个线程把GIL锁释放掉,别的线程才能拿到,然后具备了执行权限.

GIL全局解释器需要注意的问题

1. python有GIL锁的原因,同一个进程下多个线程实际上同一时刻,只有一个线程在执行

2. 只有在python上开进程用的多,其他语言一般不开多进程,只开多线程就够了

3. cpython解释器开多线程不能利用多核优势,只有开多进程才能利用多核优势,其他语言不存在这个问题

4. 8核cpu电脑,充分利用起我这个8核,至少起8个线程,8条线程全是计算--->计算机cpu使用率是100%

5. 如果不存在GIL锁,一个进程下,开启8个线程,它就能够充分利用cpu资源,跑满cpu

6. cpython解释器中好多代码,模块都是基于GIL锁机制写起来的,改不了了---》我们不能有8个核,但我现在只能用1核,----》开启多进程---》每个进程下开启的线程,可以被多个cpu调度执行

7. cpython解释器:io密集型使用多线程,计算密集型使用多进程

I / O密集型: 遇到io操作会切换cpu,假设你开了8个线程,8个线程都有io操作---》io操作不消耗cpu---》一段时间内看上去,其实8个线程都执行了, 选多线程好一些

计算密集型: 消耗cpu,如果开了8个线程,第一个线程会一直占着cpu,而不会调度到其他线程执行,其他7个线程根本没执行,所以我们开8个进程,每个进程有一个线程,8个进程下的线程会被8个cpu执行,从而效率高.


互斥锁

        互斥锁的作用:在多线程的情况下,同时执行一个数据,会发生数据错乱的问题,互斥锁可以防止这种情况发生。

n = 10
from threading import Lock
import time

def task(lock):
    lock.acquire()
    global n
    temp = n
    time.sleep(0.5)
    n = temp - 1
    lock.release()


"""拿时间换空间,空间换时间 时间复杂度"""

from threading import Thread

if __name__ == '__main__':

    tt = []
    lock=Lock()
    for i in range(10):
        t = Thread(target=task, args=(lock, ))
        t.start()
        tt.append(t)
    for j in tt:
        j.join()

    print("主", n)

GIL锁,互斥锁 面试题

面试题:既然有了GIL锁,为什么还要互斥锁? (多线程下)


       举例比如:我起了2个线程,来执行a=a+1,a一开始是0
       1. 第一个线程来了,拿到a=0,开始执行a=a+1,这个时候结果a就是1了
       2. 第一个线程得到的结果1还没有赋值回去给a,这个时候,第二个线程来了,拿到的a是             0,继续执行, a=a+1结果还是1
       3. 加了互斥锁,就能够解决多线程下操作同一个数据,发生错乱的问题

线程队列(线程里使用队列)

为什么线程中还有使用队列?


        同一个进程下多个线程数据是共享的,为什么先同一个进程下还会去使用队列呢
因为队列是管道 + 锁,所以用队列还是为了保证数据的安全
 

程队列:
	1. 先进先出
    2. 后进先出
    3. 优先级的队列
    
from multiprocessing import Queue

"""线程队列"""

import queue
queue.Queue()

# queue.Queue 的缺点是它的实现涉及到多个锁和条件变量,因此可能会影响性能和内存效率。
import queue

q=queue.Queue() # 无限大、
q.put('first')
q.put('second')
q.put('third')
q.put('third')


print(q.get())
print(q.get())
print(q.get())
 
## 后进先出
import queue

# Lifo:last in first out
q=queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third')

print(q.get())
print(q.get())
print(q.get())

## 优先级队列
import queue

q=queue.PriorityQueue()
#put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c'))

print(q.get())
print(q.get())
print(q.get())
'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')
'''

进程池和线程池的使用

:池子、容器类型,可以盛放多个元素

进程池:提前定义好一个池子,然后,往这个池子里面添加进程,以后,只需要往这个进程池里面丢任务就行了,然后,有这个进程池里面的任意一个进程来执行任务

线程池:提前定义好一个池子,然后,往这个池子里面添加线程,以后,只需要往这个线程池里面丢任务就行了,然后,有这个线程池里面的任意一个线程来执行任务

def task(n, m):
    return n+m

def task1():
    return {'username':'kevin', 'password':123}
"""开进程池"""
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor


def callback(res):
    print(res) # Future at 0x1ed5a5e5610 state=finished returned int>
    print(res.result()) # 3

def callback1(res):
    print(res) # Future at 0x1ed5a5e5610 state=finished returned int>
    print(res.result()) # {'username': 'kevin', 'password': 123}
    print(res.result().get('username'))
if __name__ == '__main__':
    pool=ProcessPoolExecutor(3) # 定义一个进程池,里面有3个进程
    ## 2. 往池子里面丢任务

    pool.submit(task, m=1, n=2).add_done_callback(callback)
    pool.submit(task1).add_done_callback(callback1)
    pool.shutdown()  # join + close
    print(123)

进程池和线程池有什么好处呢? 

(1)降低资源消耗。通过重复利用已创建的线程降低线程创建、销毁线程造成的消耗。
(2)提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
(3)提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配、调优和监控。


Concurrent.futures模块(爬虫)

模块介绍

concurrent.futures模块提供了高度封装的异步调用接口

ThreadPoolExecutor:线程池,提供异步调用

ProcessPoolExecutor:进程池,提供异步调用

Both implement the same interface, which is defined by the abstract Executor class.

基本方法

submit(fn, *args, **kwargs):异步提交任务

map(func, *iterables, timeout=None, chunksize=1):取代for循环submit的操作

shutdown(wait=True):相当于进程池的pool.close()+pool.join()操作

  • wait=True,等待池内所有任务执行完毕回收完资源后才继续
  • wait=False,立即返回,并不会等待池内的任务执行完毕
  • 但不管wait参数为何值,整个程序都会等到所有任务执行完毕
  • submit和map必须在shutdown之前

result(timeout=None):取得结果

add_done_callback(fn):回调函数

done():判断某一个线程是否完成

cancle():取消某个任务

ThreadPoolExecutor线程池


常用函数


        将函数提交到线程池里面运行的时候,会自动创建Future对象并返回。这个Future对象里面就包含了函数的执行状态(比如此时是处于暂停、运行中还是完成等)。并且函数在执行完毕之后,还会调用future.set_result将自身的返回值设置进去。
        (1)创建一个线程池,可以指定max_workers参数,表示最多创建多少个线程。如果不指定,那么每提交一个函数,都会为其创建一个线程。

在启动线程池的时候,肯定是需要设置容量的,不然处理几千个函数要开启几千个线程。

        (2)通过submit即可将函数提交到线程池,一旦提交,就会立刻运行。因为开启了一个新的线程,主线程会继续往下执行。至于submit的参数,按照函数名,对应参数提交即可。

        (3)future相当于一个容器,包含了内部函数的执行状态。

        (4)函数执行完毕时,会将返回值设置在future里,也就是说一旦执行了 future.set_result,那么就表示函数执行完毕了,然后外界可以调用result拿到返回值。
 

from concurrent.futures import ThreadPoolExecutor
import time


def task(name, n):
    time.sleep(n)
    return f"{name} 睡了 {n} 秒"


executor = ThreadPoolExecutor()
future = executor.submit(task, "屏幕前的你", 3)

print(future)  # 返回值类型是str
print(future.running())  # False
print(future.done())  # True

print(future.result())

多线程爬取网页

import requests

def get_page(url):
    res=requests.get(url)
    name=url.rsplit('/')[-1]+'.html'
    return {'name':name,'text':res.content}

def call_back(fut):
    print(fut.result()['name'])
    with open(fut.result()['name'],'wb') as f:
        f.write(fut.result()['text'])


if __name__ == '__main__':
    pool=ThreadPoolExecutor(2)
    urls=['http://www.baidu.com','http://www.cnblogs.com','http://www.taobao.com']
    for url in urls:
        pool.submit(get_page,url).add_done_callback(call_back)

协程理论

核心理解:切换是程序员级别的切换,我们自己切,不是操作系统切的

协程的本质:最大效率的利用计算机的CPU资源,欺骗计算机,让计算机cpu一直保持工作状态

协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是协程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

需要强调的是:

  1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
  2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

对比操作系统控制线程的切换,用户在单线程内控制协程的切换。

优点如下:

  1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
  2. 单线程内就可以实现并发的效果,最大限度地利用cpu

缺点如下:

  1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
  2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

总结协程特点

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

协程之greenlet模块

一、安装模块

安装:pip3 install greenlet

二、greenlet实现状态切换

from greenlet import greenlet

def eat(name):
    print('%s eat 1' %name)
    g2.switch('nick')
    print('%s eat 2' %name)
    g2.switch()
def play(name):
    print('%s play 1' %name)
    g1.switch()
    print('%s play 2' %name)

g1=greenlet(eat)
g2=greenlet(play)

g1.switch('nick')#可以在第一次switch时传入参数,以后都不需要

单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度。

三、效率对比

#顺序执行
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i

def f2():
    res=1
    for i in range(100000000):
        res*=i

start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337

#切换
from greenlet import greenlet
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i
        g2.switch()

def f2():
    res=1
    for i in range(100000000):
        res*=i
        g1.switch()

start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524

greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2…如此,才能提高效率,这就用到了Gevent模块。


协程之gevent模块

1 猴子补丁

1,这个词原来为Guerrilla Patch,杂牌军、游击队,说明这部分不是原装的,在英文里guerilla发音和gorllia(猩猩)相似,再后来就写了monkey(猴子)。

2,还有一种解释是说由于这种方式将原来的代码弄乱了(messing with it),在英文里叫monkeying about(顽皮的),所以叫做Monkey Patch。

1.1 猴子补丁的功能(一切皆对象)

        拥有在模块运行时替换的功能, 例如: 一个函数对象赋值给另外一个函数对象(把函数原本的执行的功能给替换了)

class Monkey():
    def play(self):
        print('猴子在玩')

class Dog():
    def play(self):
        print('狗子在玩')
m=Monkey()
m.play()
m.play=Dog().play
m.play()

1.2 monkey patch的应用场景

        这里有一个比较实用的例子,很多用到import json, 后来发现ujson性能更高,如果觉得把每个文件的import json改成import ujson as json成本较高, 或者说想测试一下ujson替换是否符合预期, 只需要在入口加上:

import json
import ujson

def monkey_patch_json():
    json.__name__ = 'ujson'
    json.dumps = ujson.dumps
    json.loads = ujson.loads
monkey_patch_json()
aa=json.dumps({'name':'lqz','age':19})
print(aa)

1.3 Gevent介绍

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。 

 用法

#用法
g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值

示例1(遇到io自动切)

import gevent
def eat(name):
    print('%s eat 1' %name)
    gevent.sleep(2)
    print('%s eat 2' %name)

def play(name):
    print('%s play 1' %name)
    gevent.sleep(1)
    print('%s play 2' %name)


g1=gevent.spawn(eat,'lqz')
g2=gevent.spawn(play,name='lqz')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('主')

示例二 

'''
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,

而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了

from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头
'''
from gevent import monkey;monkey.patch_all()

import gevent
import time
def eat():
    print('eat food 1')
    time.sleep(2)
    print('eat food 2')

def play():
    print('play 1')
    time.sleep(1)
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play_phone)
gevent.joinall([g1,g2])
print('主')

# 我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程

协程实现高并发

服务端:

服务端:
from gevent import monkey;

monkey.patch_all()
import gevent
from socket import socket
# from multiprocessing import Process
from threading import Thread


def talk(conn):
    while True:
        try:
            data = conn.recv(1024)
            if len(data) == 0: break
            print(data)
            conn.send(data.upper())
        except Exception as e:
            print(e)
    conn.close()


def server(ip, port):
    server = socket()
    server.bind((ip, port))
    server.listen(5)
    while True:
        conn, addr = server.accept()
        # t=Process(target=talk,args=(conn,))
        # t=Thread(target=talk,args=(conn,))
        # t.start()
        gevent.spawn(talk, conn)


if __name__ == '__main__':
    g1 = gevent.spawn(server, '127.0.0.1', 8080)
    g1.join()

客户端:

客户端:
	import socket
from threading import current_thread, Thread


def socket_client():
    cli = socket.socket()
    cli.connect(('127.0.0.1', 8080))
    while True:
        ss = '%s say hello' % current_thread().getName()
        cli.send(ss.encode('utf-8'))
        data = cli.recv(1024)
        print(data)


for i in range(5000):
    t = Thread(target=socket_client)
    t.start()

END


你可能感兴趣的:(python)