推荐阅读:
文章推荐系统 | 一、推荐流程设计
文章推荐系统 | 二、同步业务数据
在上一篇文章中,我们完成了业务数据的同步,在推荐系统中另一个必不可少的数据就是用户行为数据,可以说用户行为数据是推荐系统的基石,巧妇难为无米之炊,所以接下来,我们就要将用户的行为数据同步到推荐系统数据库中。
在文章推荐系统中,用户行为包括曝光、点击、停留、收藏、分享等,所以这里我们定义的用户行为数据的字段包括:发生时间(actionTime)、停留时间(readTime)、频道 ID(channelId)、事件名称(action)、用户 ID(userId)、文章 ID(articleId)以及算法 ID(algorithmCombine),这里采用 json 格式,如下所示
# 曝光的参数
{"actionTime":"2019-04-10 18:15:35","readTime":"","channelId":0,"param":{"action": "exposure", "userId": "2", "articleId": "[18577, 14299]", "algorithmCombine": "C2"}}
# 对文章触发行为的参数
{"actionTime":"2019-04-10 18:15:36","readTime":"","channelId":18,"param":{"action": "click", "userId": "2", "articleId": "18577", "algorithmCombine": "C2"}}
{"actionTime":"2019-04-10 18:15:38","readTime":"1621","channelId":18,"param":{"action": "read", "userId": "2", "articleId": "18577", "algorithmCombine": "C2"}}
{"actionTime":"2019-04-10 18:15:39","readTime":"","channelId":18,"param":{"action": "click", "userId": "1", "articleId": "14299", "algorithmCombine": "C2"}}
{"actionTime":"2019-04-10 18:15:39","readTime":"","channelId":18,"param":{"action": "click", "userId": "2", "articleId": "14299", "algorithmCombine": "C2"}}
{"actionTime":"2019-04-10 18:15:41","readTime":"914","channelId":18,"param":{"action": "read", "userId": "2", "articleId": "14299", "algorithmCombine": "C2"}}
{"actionTime":"2019-04-10 18:15:47","readTime":"7256","channelId":18,"param":{"action": "read", "userId": "1", "articleId": "14299", "algorithmCombine": "C2"}}
用户离线行为数据
由于用户行为数据规模庞大,通常是每天更新一次,以供离线计算使用。首先,在 Hive 中创建用户行为数据库 profile 及用户行为表 user_action,设置按照日期进行分区,并匹配 json 格式
-- 创建用户行为数据库
create database if not exists profile comment "use action" location '/user/hive/warehouse/profile.db/';
-- 创建用户行为信息表
create table user_action
(
actionTime STRING comment "user actions time",
readTime STRING comment "user reading time",
channelId INT comment "article channel id",
param MAP comment "action parameter"
)
COMMENT "user primitive action"
PARTITIONED BY (dt STRING) # 按照日期分区
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe' # 匹配json格式
LOCATION '/user/hive/warehouse/profile.db/user_action';
通常用户行为数据被保存在应用服务器的日志文件中,我们可以利用 Flume 监听应用服务器上的日志文件,将用户行为数据收集到 Hive 的 user_action 表对应的 HDFS 目录中,Flume 配置如下
a1.sources = s1
a1.sinks = k1
a1.channels = c1
a1.sources.s1.channels= c1
a1.sources.s1.type = exec
a1.sources.s1.command = tail -F /root/logs/userClick.log
a1.sources.s1.interceptors=i1 i2
a1.sources.s1.interceptors.i1.type=regex_filter
a1.sources.s1.interceptors.i1.regex=\\{.*\\}
a1.sources.s1.interceptors.i2.type=timestamp
# c1
a1.channels.c1.type=memory
a1.channels.c1.capacity=30000
a1.channels.c1.transactionCapacity=1000
# k1
a1.sinks.k1.type=hdfs
a1.sinks.k1.channel=c1
a1.sinks.k1.hdfs.path=hdfs://192.168.19.137:9000/user/hive/warehouse/profile.db/user_action/%Y-%m-%d
a1.sinks.k1.hdfs.useLocalTimeStamp = true
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=Text
a1.sinks.k1.hdfs.rollInterval=0
a1.sinks.k1.hdfs.rollSize=10240
a1.sinks.k1.hdfs.rollCount=0
a1.sinks.k1.hdfs.idleTimeout=60
编写 Flume 启动脚本 collect_click.sh
#!/usr/bin/env bash
export JAVA_HOME=/root/bigdata/jdk
export HADOOP_HOME=/root/bigdata/hadoop
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
/root/bigdata/flume/bin/flume-ng agent -c /root/bigdata/flume/conf -f /root/bigdata/flume/conf/collect_click.conf -Dflume.root.logger=INFO,console -name a1
Flume 自动生成目录后,需要手动关联 Hive 分区后才能加载到数据
alter table user_action add partition (dt='2019-11-11') location "/user/hive/warehouse/profile.db/user_action/2011-11-11/"
用户实时行为数据
为了提高推荐的实时性,我们也需要收集用户的实时行为数据,以供在线计算使用。这里利用 Flume 将日志收集到 Kafka,在线计算任务可以从 Kafka 读取用户实时行为数据。首先,开启 zookeeper,以守护进程运行
/root/bigdata/kafka/bin/zookeeper-server-start.sh -daemon /root/bigdata/kafka/config/zookeeper.properties
开启 Kafka
/root/bigdata/kafka/bin/kafka-server-start.sh /root/bigdata/kafka/config/server.properties
# 开启消息生产者
/root/bigdata/kafka/bin/kafka-console-producer.sh --broker-list 192.168.19.19092 --sync --topic click-trace
# 开启消费者
/root/bigdata/kafka/bin/kafka-console-consumer.sh --bootstrap-server 192.168.19.137:9092 --topic click-trace
修改 Flume 的日志收集配置文件,添加 c2 和 k2 ,将日志数据收集到 Kafka
a1.sources = s1
a1.sinks = k1 k2
a1.channels = c1 c2
a1.sources.s1.channels= c1 c2
a1.sources.s1.type = exec
a1.sources.s1.command = tail -F /root/logs/userClick.log
a1.sources.s1.interceptors=i1 i2
a1.sources.s1.interceptors.i1.type=regex_filter
a1.sources.s1.interceptors.i1.regex=\\{.*\\}
a1.sources.s1.interceptors.i2.type=timestamp
# c1
a1.channels.c1.type=memory
a1.channels.c1.capacity=30000
a1.channels.c1.transactionCapacity=1000
# c2
a1.channels.c2.type=memory
a1.channels.c2.capacity=30000
a1.channels.c2.transactionCapacity=1000
# k1
a1.sinks.k1.type=hdfs
a1.sinks.k1.channel=c1
a1.sinks.k1.hdfs.path=hdfs://192.168.19.137:9000/user/hive/warehouse/profile.db/user_action/%Y-%m-%d
a1.sinks.k1.hdfs.useLocalTimeStamp = true
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=Text
a1.sinks.k1.hdfs.rollInterval=0
a1.sinks.k1.hdfs.rollSize=10240
a1.sinks.k1.hdfs.rollCount=0
a1.sinks.k1.hdfs.idleTimeout=60
# k2
a1.sinks.k2.channel=c2
a1.sinks.k2.type=org.apache.flume.supervisorctl
我们可以利用supervisorctl来管理supervisor。sink.kafka.KafkaSink
a1.sinks.k2.kafka.bootstrap.servers=192.168.19.137:9092
a1.sinks.k2.kafka.topic=click-trace
a1.sinks.k2.kafka.batchSize=20
a1.sinks.k2.kafka.producer.requiredAcks=1
编写 Kafka 启动脚本 start_kafka.sh
#!/usr/bin/env bash
# 启动zookeeper
/root/bigdata/kafka/bin/zookeeper-server-start.sh -daemon /root/bigdata/kafka/config/zookeeper.properties
# 启动kafka
/root/bigdata/kafka/bin/kafka-server-start.sh /root/bigdata/kafka/config/server.properties
# 增加topic
/root/bigdata/kafka/bin/kafka-topics.sh --zookeeper 192.168.19.137:2181 --create --replication-factor 1 --topic click-trace --partitions 1
进程管理
我们这里使用 Supervisor 进行进程管理,当进程异常时可以自动重启,Flume 进程配置如下
[program:collect-click]
command=/bin/bash /root/toutiao_project/scripts/collect_click.sh
user=root
autorestart=true
redirect_stderr=true
stdout_logfile=/root/logs/collect.log
loglevel=info
stopsignal=KILL
stopasgroup=true
killasgroup=true
Kafka 进程配置如下
[program:kafka]
command=/bin/bash /root/toutiao_project/scripts/start_kafka.sh
user=root
autorestart=true
redirect_stderr=true
stdout_logfile=/root/logs/kafka.log
loglevel=info
stopsignal=KILL
stopasgroup=true
killasgroup=true
启动 Supervisor
supervisord -c /etc/supervisord.conf
启动 Kafka 消费者,并在应用服务器日志文件中写入日志数据,Kafka 消费者即可收集到实时行为数据
# 启动Kafka消费者
/root/bigdata/kafka/bin/kafka-console-consumer.sh --bootstrap-server 192.168.19.137:9092 --topic click-trace
# 写入日志数据
echo {\"actionTime\":\"2019-04-10 21:04:39\",\"readTime\":\"\",\"channelId\":18,\"param\":{\"action\": \"click\", \"userId\": \"2\", \"articleId\": \"14299\", \"algorithmCombine\": \"C2\"}} >> userClick.log
# 消费者接收到日志数据
{"actionTime":"2019-04-10 21:04:39","readTime":"","channelId":18,"param":{"action": "click", "userId": "2", "articleId": "14299", "algorithmCombine": "C2"}}
Supervisor 常用命令如下
supervisorctl
> status # 查看程序状态
> start apscheduler # 启动apscheduler单一程序
> stop toutiao:* # 关闭toutiao组程序
> start toutiao:* # 启动toutiao组程序
> restart toutiao:* # 重启toutiao组程序
> update # 重启配置文件修改过的程序
参考
https://www.bilibili.com/video/av68356229
https://pan.baidu.com/s/1-uvGJ-mEskjhtaial0Xmgw(学习资源已保存至网盘, 提取码:eakp)