Hive中有三种UDF:
1、用户定义函数(user-defined function)UDF;
2、用户定义聚集函数(user-defined aggregate function,UDAF);
3、用户定义表生成函数(user-defined table-generating function,UDTF)。
==========================================================================
UDF操作作用于单个数据行,并且产生一个数据行作为输出。大多数函数都属于这一类(比如数学函数和字符串函数)。
UDAF 接受多个输入数据行,并产生一个输出数据行。像COUNT和MAX这样的函数就是聚集函数。
UDTF 操作作用于单个数据行,并且产生多个数据行-------一个表作为输出。lateral view explore()
简单来说:
UDF:返回对应值,一对一
UDAF:返回聚类值,多对一
UDTF:返回拆分值,一对多
****************************************************************************************************************
UDTF
package com.byte.udtf;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.json.JSONArray;
import org.json.JSONException;
import java.util.ArrayList;
public class EventJsonUDTFextends GenericUDTF {
//该方法中,我们将指定输出参数的名称和参数类型:
@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs)throws UDFArgumentException {
ArrayList fieldNames =new ArrayList();
ArrayList fieldOIs =new ArrayList();
fieldNames.add("event_name");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
fieldNames.add("event_json");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
}
//输入1条记录,输出若干条结果
@Override
public void process(Object[] objects)throws HiveException {
// 获取传入的et
String input = objects[0].toString();
// 如果传进来的数据为空,直接返回过滤掉该数据
if (StringUtils.isBlank(input)) {
return;
}else {
try {
// 获取一共有几个事件(ad/facoriters)
JSONArray ja =new JSONArray(input);
if (ja ==null)
return;
// 循环遍历每一个事件
for (int i =0; i < ja.length(); i++) {
String[] result =new String[2];
try {
// 取出每个的事件名称(ad/facoriters)
result[0] = ja.getJSONObject(i).getString("en");
// 取出每一个事件整体
result[1] = ja.getString(i);
}catch (JSONException e) {
continue;
}
// 将结果返回
forward(result);
}
}catch (JSONException e) {
e.printStackTrace();
}
}
}
//当没有记录处理的时候该方法会被调用,用来清理代码或者产生额外的输出
@Override
public void close()throws HiveException {
}
}
****************************************************************************************************************
UDF
package com.byte.udf;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.json.JSONException;
import org.json.JSONObject;
public class BaseFieldUDFextends UDF {
public String evaluate(String line, String jsonkeysString) {
// 0 准备一个sb
StringBuilder sb =new StringBuilder();
// 1 切割jsonkeys mid uid vc vn l sr os ar md
String[] jsonkeys = jsonkeysString.split(",");
// 2 处理line 服务器时间 | json
String[] logContents = line.split("\\|");
// 3 合法性校验
if (logContents.length !=2 || StringUtils.isBlank(logContents[1])) {
return "";
}
// 4 开始处理json
try {
JSONObject jsonObject =new JSONObject(logContents[1]);
// 获取cm里面的对象
JSONObject base = jsonObject.getJSONObject("cm");
// 循环遍历取值
for (int i =0; i < jsonkeys.length; i++) {
String filedName = jsonkeys[i].trim();
if (base.has(filedName)) {
sb.append(base.getString(filedName)).append("\t");
}else {
sb.append("\t");
}
}
sb.append(jsonObject.getString("et")).append("\t");
sb.append(logContents[0]).append("\t");
}catch (JSONException e) {
e.printStackTrace();
}
return sb.toString();
}
}
时间有限 晚天补一个UDAF函数 哈哈!!!