二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
//定义节点
template <class T>
struct BNode
{
T _data;
typedef BNode<T> Node;
Node* _left;
Node* _right;
BNode(const T& data)
:_data(data)
, _left(nullptr)
, _right(nullptr)
{}
};
//定义二叉树
template <class T>
class BTree
{
public:
typedef BNode<T> Node;
//构造函数
BTree()
:_root(nullptr)
{}
//拷贝二叉搜索树的数据和结构
Node* copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newNode = new Node(root->_data);
newNode->_left = copy(root->_left);
newNode->_right = copy(root->_right);
return newNode;
}
//拷贝构造(深拷贝)
BTree(const BTree<T>& btree)
:_root(copy(btree._root))
{}
void destroy(Node* root)
{
if (root)
{
destroy(root->_left);
destroy(root->_right);
cout << "destroy: " << root->_data << endl;
delete root;
}
}
//析构函数
~BTree()
{
if (_root)
{
destroy(_root);
_root = nullptr;
}
}
private:
Node* _root;
};
//不插入重复的值
bool insert(const T& val)
{
if (_root == nullptr)
{
_root = new Node(val);
return true;
}
//搜索,找到合适的插入位置
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
parent = cur;
if (cur->_data == val)
return false;
else if (cur->_data > val)
cur = cur->_left;
else
cur = cur->_right;
}
//插入
cur = new Node(val);
//链接
if (parent->_data > val)
parent->_left = cur;
else
parent->_right = cur;
}
bool erase(const T& val)
{
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_data == val)
break;
parent = cur;
if (cur->_data > val)
cur = cur->_left;
else
cur = cur->_right;
}
//判断需要删除的节点是否存在
if (cur == nullptr)
return false;
else
{
//1.删除的为叶子节点
if (cur->_left == nullptr && cur->_right == nullptr)
{
//判断是否为根节点
if (cur == _root)
_root == nullptr;
else
{
if (parent->_left == cur)
parent->_left = nullptr;
else
parent->_right = nullptr;
}
//删除节点
delete cur;
}
//2.非叶子节点
else if (cur->_left == cur)
{
//判断是否为根节点
if (cur == _root)
{
//更新根节点
_root = cur->_right;
}
else
{
if (parent->_left = cur)
parent->_left = cur->_right;
else
parent->_right = cur->_right;
}
//删除节点
delete cur;
}
//3.非叶子节点
else if (cur->_right == nullptr)
{
//判断是否为根节点
if (cur == _root)
{
//更新根节点
_root = cur->_left;
}
else
{
if (parent->_left = cur)
parent->_left = cur->_left;
else
parent->_right = cur->_left;
}
//删除节点
delete cur;
}
//4.左右子树都存在
else
{
//1.假设找左子树的最右节点
Node* leftRightMost = cur->_left;
parent = cur;
while (leftRightMost->_right)
{
parent = leftRightMost;
leftRightMost = leftRightMost->_right;
}
//交换最右节点和要删除节点的值
swap(cur->_data, leftRightMost->_data);
if (parent->_left == leftRightMost)
parent->_left = leftRightMost->_left;
else
parent->_right = leftRightMost->_left;
delete leftRightMost;
}
return true;
}
}
Node* find(const T& val)
{
Node* cur = _root;
while (cur)
{
if (cur->_data == val)
return cur;
else if (cur->_data > val)
return cur->_left;
else
return cur->_right;
}
}
void inorder()
{
_inorder(_root);
}
//搜索树的中序遍历有序
void _inorder(Node* root)
{
if (root)
{
_inorder(root->_left);
cout << root->_data << " ";
_inorder(root->_right);
}
}
template <class T>
struct BNode
{
T _data;
typedef BNode<T> Node;
Node* _left;
Node* _right;
BNode(const T& data)
:_data(data)
, _left(nullptr)
, _right(nullptr)
{}
};
template <class T>
class BTree
{
public:
typedef BNode<T> Node;
BTree()
:_root(nullptr)
{}
//拷贝二叉搜索树的数据和结构
Node* copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newNode = new Node(root->_data);
newNode->_left = copy(root->_left);
newNode->_right = copy(root->_right);
return newNode;
}
BTree(const BTree<T>& btree)
:_root(copy(btree._root))
{}
//不插入重复的值
bool insert(const T& val)
{
if (_root == nullptr)
{
_root = new Node(val);
return true;
}
//搜索,找到合适的插入位置
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
parent = cur;
if (cur->_data == val)
return false;
else if (cur->_data > val)
cur = cur->_left;
else
cur = cur->_right;
}
//插入
cur = new Node(val);
//链接
if (parent->_data > val)
parent->_left = cur;
else
parent->_right = cur;
}
bool erase(const T& val)
{
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_data == val)
break;
parent = cur;
if (cur->_data > val)
cur = cur->_left;
else
cur = cur->_right;
}
//判断需要删除的节点是否存在
if (cur == nullptr)
return false;
else
{
//1.删除的为叶子节点
if (cur->_left == nullptr && cur->_right == nullptr)
{
//判断是否为根节点
if (cur == _root)
_root == nullptr;
else
{
if (parent->_left == cur)
parent->_left = nullptr;
else
parent->_right = nullptr;
}
//删除节点
delete cur;
}
//2.非叶子节点
else if (cur->_left == cur)
{
//判断是否为根节点
if (cur == _root)
{
//更新根节点
_root = cur->_right;
}
else
{
if (parent->_left = cur)
parent->_left = cur->_right;
else
parent->_right = cur->_right;
}
//删除节点
delete cur;
}
//3.非叶子节点
else if (cur->_right == nullptr)
{
//判断是否为根节点
if (cur == _root)
{
//更新根节点
_root = cur->_left;
}
else
{
if (parent->_left = cur)
parent->_left = cur->_left;
else
parent->_right = cur->_left;
}
//删除节点
delete cur;
}
//4.左右子树都存在
else
{
//1.假设找左子树的最右节点
Node* leftRightMost = cur->_left;
parent = cur;
while (leftRightMost->_right)
{
parent = leftRightMost;
leftRightMost = leftRightMost->_right;
}
//交换最右节点和要删除节点的值
swap(cur->_data, leftRightMost->_data);
if (parent->_left == leftRightMost)
parent->_left = leftRightMost->_left;
else
parent->_right = leftRightMost->_left;
delete leftRightMost;
}
return true;
}
}
Node* find(const T& val)
{
Node* cur = _root;
while (cur)
{
if (cur->_data == val)
return cur;
else if (cur->_data > val)
return cur->_left;
else
return cur->_right;
}
}
void inorder()
{
_inorder(_root);
}
//搜索树的中序遍历有序
void _inorder(Node* root)
{
if (root)
{
_inorder(root->_left);
cout << root->_data << " ";
_inorder(root->_right);
}
}
void destroy(Node* root)
{
if (root)
{
destroy(root->_left);
destroy(root->_right);
cout << "destroy: " << root->_data << endl;
delete root;
}
}
~BTree()
{
if (_root)
{
destroy(_root);
_root = nullptr;
}
}
private:
Node* _root;
};
void test()
{
BTree<int> b;
b.insert(50);
b.insert(90);
b.insert(40);
b.insert(20);
}
KV模型:每一个关键码key,都有与之对应的值Value,即
比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文
template <class K, class V>
struct BNode
{
//T _data;
K _key; //类似于索引
V _value; //类似于data
typedef BNode<K, V> Node;
Node* _left;
Node* _right;
BNode(const K& key, const V& value)
:_key(key)
,_value(value)
, _left(nullptr)
, _right(nullptr)
{}
};
template <class K, class V>
class BTree
{
public:
typedef BNode<K, V> Node;
BTree()
:_root(nullptr)
{}
//拷贝二叉搜索树的数据和结构
Node* copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newNode = new Node(root->_key, root->_value);
newNode->_left = copy(root->_left);
newNode->_right = copy(root->_right);
return newNode;
}
BTree(const BTree<K, V>& btree)
:_root(copy(btree._root))
{}
//不插入重复的值
bool insert(const K& key, const V& value)
{
if (_root == nullptr)
{
_root = new Node(key, value);
return true;
}
//搜索,找到合适的插入位置
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
parent = cur;
if (cur->_key == key)
return false;
else if (cur->_key > key)
cur = cur->_left;
else
cur = cur->_right;
}
//插入
cur = new Node(key, value);
//链接
if (parent->_key > key)
parent->_left = cur;
else
parent->_right = cur;
}
bool erase(const key& key)
{
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_key == key)
break;
parent = cur;
if (cur->_key > key)
cur = cur->_left;
else
cur = cur->_right;
}
//判断需要删除的节点是否存在
if (cur == nullptr)
return false;
else
{
//1.删除的为叶子节点
if (cur->_left == nullptr && cur->_right == nullptr)
{
//判断是否为根节点
if (cur == _root)
_root == nullptr;
else
{
if (parent->_left == cur)
parent->_left = nullptr;
else
parent->_right = nullptr;
}
//删除节点
delete cur;
}
//2.非叶子节点
else if (cur->_left == cur)
{
//判断是否为根节点
if (cur == _root)
{
//更新根节点
_root = cur->_right;
}
else
{
if (parent->_left = cur)
parent->_left = cur->_right;
else
parent->_right = cur->_right;
}
//删除节点
delete cur;
}
//3.非叶子节点
else if (cur->_right == nullptr)
{
//判断是否为根节点
if (cur == _root)
{
//更新根节点
_root = cur->_left;
}
else
{
if (parent->_left = cur)
parent->_left = cur->_left;
else
parent->_right = cur->_left;
}
//删除节点
delete cur;
}
//4.左右子树都存在
else
{
//1.假设找左子树的最右节点
Node* leftRightMost = cur->_left;
parent = cur;
while (leftRightMost->_right)
{
parent = leftRightMost;
leftRightMost = leftRightMost->_right;
}
//交换最右节点和要删除节点的值
swap(cur->_key, leftRightMost->_key);
swap(cur->_value, leftRightMost->_value);
if (parent->_left == leftRightMost)
parent->_left = leftRightMost->_left;
else
parent->_right = leftRightMost->_left;
delete leftRightMost;
}
return true;
}
}
Node* find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key == key)
return cur;
else if (cur->_key > key)
return cur->_left;
else
return cur->_right;
}
}
void inorder()
{
_inorder(_root);
}
//搜索树的中序遍历有序
void _inorder(Node* root)
{
if (root)
{
_inorder(root->_left);
cout << root->_key << "-->" << root->_value << " ";
_inorder(root->_right);
}
}
void destroy(Node* root)
{
if (root)
{
destroy(root->_left);
destroy(root->_right);
cout << "destroy: " << root->_key << "-->" << root->_value << endl;
delete root;
}
}
~BTree()
{
if (_root)
{
destroy(_root);
_root = nullptr;
}
}
private:
Node* _root;
};
void test()
{
BTree<int, int> b;
//value可以重复,k不能重复
b.insert(5, 50);
b.insert(3, 30);
b.insert(7, 40);
b.insert(1, 20);
}
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:O(log_n)
最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:O(n)
如果退化成单支树,二叉搜索树的性能就失去了。