想要精通算法和SQL的成长之路 - 两个字符串的删除操作

想要精通算法和SQL的成长之路 - 两个字符串的删除操作

  • 前言
  • 一. 两个字符串的删除操作

前言

想要精通算法和SQL的成长之路 - 系列导航

可以看下这篇文章不同的子序列,该题中,是删除某一个字符串中的元素。而本题在其基础上,支持两个字符串的删除操作。

一. 两个字符串的删除操作

原题链接

给定两个单词 word1word2 ,返回使得 word1word2 相同所需的最小步数。每步可以删除任意一个字符串中的一个字符。

示例 1:

  • 输入: word1 = “sea”, word2 = “eat”
  • 输出: 2
  • 解释: 第一步将 “sea” 变为 “ea” ,第二步将 "eat "变为 “ea”

思路:参考最长公共子序列。

我们先来复习下最长公共子序列问题的几个特征:

  1. 两个字符串之间的最长公共子序列。
  2. 子序列不要求是严格连续。换句话说就是可以删除某个字符。

那么我们再来看看本题目:两个字符串的删除操作

  1. 目的:让两个字符串相同。等同于:求两个字符串之间的最长公共子序列。把其他多余的字符串全删掉就好了。

那就好办了,我们只需要两个大步骤即可得解:

  1. 求得最长公共子序列长度为maxCommonLen
  2. 那么word1需要删除的元素个数为:word1.length()-maxCommonLen。那么word2需要删除的元素个数为:word2.length()-maxCommonLen
  3. 两者相加就是结果了。

由于最长公共子序列的代码已经有了,我这里直接复用一下即可,最终代码为:

public int longestCommonSubsequence(String text1, String text2) {
    int[][] dp = new int[text1.length() + 1][text2.length() + 1];
    int res = 0;
    for (int i = 1; i <= text1.length(); i++) {
        for (int j = 1; j <= text2.length(); j++) {
        	// 如果两个元素相等,子序列长度+1
            if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                dp[i][j] = dp[i - 1][j - 1] + 1;
            } else {
            	// 否则,继承自上一个状态值
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
            }
            // 更新最大值
            res = Math.max(res, dp[i][j]);
        }
    }
    return res;
}

public int minDistance(String word1, String word2) {
	// 最长公共子序列长度
    int maxCommon = longestCommonSubsequence(word1, word2);
    // 需要删除的元素个数
    return word1.length() + word2.length() - 2 * maxCommon;
}

你可能感兴趣的:(精通算法和SQL之路,算法,leetcode,职场和发展)