每一题动态规划-5 【LeetCode 516.最长回文子序列:从暴力递归到动态规划】

题目链接:516. 最长回文子序列

递归版本(会超时):

public class Code7_PalindromeSubsequence {
	public static int PalindromeSubsequence1(String str) {
		char[] _str = str.toCharArray();
		return process(_str, 0, _str.length);
	}

	public static int process(char[] str, int L, int R) {
		if (L == R) {
			return 1;
		}
		if (L == R - 1) {
			return str[L] == str[R] ? 2 : 1;
		}
		int p1 = process(str, L + 1, R);
		int p2 = process(str, L, R - 1);
		int p3 = process(str, L + 1, R - 1);
		int p4 = str[L] == str[R] ? (2 + process(str, L + 1, R - 1)) : 0;
		return Math.max(Math.max(p1, p2), Math.max(p3, p4));
	}
}

动态规划版本(最优解):

public class Code7_PalindromeSubsequence {

	public static int PalindromeSubsequence2(String str) {
		char[] _str = str.toCharArray();
		int N = _str.length;
		int[][] dp = new int[N][N];
		dp[N - 1][N - 1] = 1;
		for (int i = 0; i < N - 1; i++) {
			dp[i][i] = 1;// 对角线全为1
			dp[i][i + 1] = _str[i] == _str[i + 1] ? 2 : 1;
		}
		for (int L = N - 3; L >= 0; L--) {
			for (int R = L + 2; R < N; R++) {
				dp[L][R] = Math.max(dp[L][R - 1], dp[L + 1][R]);
				if (_str[L] == _str[R]) {
					dp[L][R] = Math.max(dp[L][R], dp[L + 1][R - 1] + 2);
				}
			}
		}
		return dp[0][N - 1];
	}

}

你可能感兴趣的:(动态规划,动态规划,leetcode,算法,最长回文子序列)