相似度loss汇总,pytorch code

用于约束图像生成,作为loss。

可梯度优化

  • pytorch structural similarity (SSIM) loss https://github.com/Po-Hsun-Su/pytorch-ssim
  • https://github.com/harveyslash/Facial-Similarity-with-Siamese-Networks-in-Pytorch/blob/master/Siamese-networks-medium.ipynb
class ContrastiveLoss(torch.nn.Module):
    """
    Contrastive loss function.
    Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
    """

    def __init__(self, margin=2.0):
        super(ContrastiveLoss, self).__init__()
        self.margin = margin

    def forward(self, output1, output2, label):
        euclidean_distance = F.pairwise_distance(output1, output2, keepdim = True)
        loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +
                                      (label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))


        return loss_contrastive
  • 多个集合,参看写法 Multi-Similarity Loss for Deep Metric Learning (MS-Loss)
  • 参考 https://blog.csdn.net/m0_46204224/article/details/117997854
@LOSS.register('ms_loss')
class MultiSimilarityLoss(nn.Module):
    def __init__(self, cfg):
        super(MultiSimilarityLoss, self).__init__()
        self.thresh = 0.5
        self.margin = 0.1

        self.scale_pos = cfg.LOSSES.MULTI_SIMILARITY_LOSS.SCALE_POS
        self.scale_neg = cfg.LOSSES.MULTI_SIMILARITY_LOSS.SCALE_NEG

    def forward(self, feats, labels):
        assert feats.size(0) == labels.size(0), \
            f"feats.size(0): {feats.size(0)} is not equal to labels.size(0): {labels.size(0)}"
        batch_size = feats.size(0)
        sim_mat = torch.matmul(feats, torch.t(feats))

        epsilon = 1e-5
        loss = list()

        for i in range(batch_size):
            pos_pair_ = sim_mat[i][labels == labels[i]]
            pos_pair_ = pos_pair_[pos_pair_ < 1 - epsilon]
            neg_pair_ = sim_mat[i][labels != labels[i]]

            neg_pair = neg_pair_[neg_pair_ + self.margin > min(pos_pair_)]
            pos_pair = pos_pair_[pos_pair_ - self.margin < max(neg_pair_)]

            if len(neg_pair) < 1 or len(pos_pair) < 1:
                continue

            # weighting step
            pos_loss = 1.0 / self.scale_pos * torch.log(
                1 + torch.sum(torch.exp(-self.scale_pos * (pos_pair - self.thresh))))
            neg_loss = 1.0 / self.scale_neg * torch.log(
                1 + torch.sum(torch.exp(self.scale_neg * (neg_pair - self.thresh))))
            loss.append(pos_loss + neg_loss)

        if len(loss) == 0:
            return torch.zeros([], requires_grad=True)

        loss = sum(loss) / batch_size
        return loss
  • Recall@k Surrogate Loss with Large Batches and Similarity Mixup https://github.com/yash0307/RecallatK_surrogate
class RecallatK(torch.nn.Module):
    def __init__(self, anneal, batch_size, num_id, feat_dims, k_vals, k_temperatures, mixup):
        super(RecallatK, self).__init__()
        assert(batch_size%num_id==0)
        self.anneal = anneal
        self.batch_size = batch_size
        self.num_id = num_id
        self.feat_dims = feat_dims
        self.k_vals = [min(batch_size, k) for k in k_vals]
        self.k_temperatures = k_temperatures
        self.mixup = mixup
        self.samples_per_class = int(batch_size/num_id)

    def forward(self, preds, q_id):
        batch_size = preds.shape[0]
        num_id = self.num_id
        anneal = self.anneal
        feat_dims = self.feat_dims
        k_vals = self.k_vals
        k_temperatures = self.k_temperatures
        samples_per_class = int(batch_size/num_id)
        norm_vals = torch.Tensor([min(k, (samples_per_class-1)) for k in k_vals]).cuda()
        group_num = int(q_id/samples_per_class)
        q_id_ = group_num*samples_per_class

        sim_all = (preds[q_id]*preds).sum(1)
        sim_all_g = sim_all.view(num_id, int(batch_size/num_id))
        sim_diff_all = sim_all.unsqueeze(-1) - sim_all_g[group_num, :].unsqueeze(0).repeat(batch_size,1)
        sim_sg = sigmoid(sim_diff_all, temp=anneal)
        for i in range(samples_per_class): sim_sg[group_num*samples_per_class+i,i] = 0.
        sim_all_rk = (1.0 + torch.sum(sim_sg, dim=0)).unsqueeze(dim=0)

        sim_all_rk[:, q_id%samples_per_class] = 0.
        sim_all_rk = sim_all_rk.unsqueeze(dim=-1).repeat(1,1,len(k_vals))
        k_vals = torch.Tensor(k_vals).cuda()
        k_vals = k_vals.unsqueeze(dim=0).unsqueeze(dim=0).repeat(1, samples_per_class, 1)
        sim_all_rk = k_vals - sim_all_rk
        for given_k in range(0, len(self.k_vals)):
            sim_all_rk[:,:,given_k] = sigmoid(sim_all_rk[:,:,given_k], temp=float(k_temperatures[given_k]))

        sim_all_rk[:,q_id%samples_per_class,:] = 0.
        k_vals_loss = torch.Tensor(self.k_vals).cuda()
        k_vals_loss = k_vals_loss.unsqueeze(dim=0)
        recall = torch.sum(sim_all_rk, dim=1)
        recall = torch.minimum(recall, k_vals_loss)
        recall = torch.sum(recall, dim=0)
        recall = torch.div(recall, norm_vals)
        recall = torch.sum(recall)/len(self.k_vals)
        return (1.-recall)/batch_size
  • Circle Loss https://github.com/TinyZeaMays/CircleLoss/blob/master/circle_loss.py

  • Torch的官方 https://pytorch.org/docs/1.12/nn.functional.html#loss-functions

  • KL散度

  • Hard Triplet loss

from __future__ import absolute_import
import sys

import torch
from torch import nn
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

class TripletLoss(nn.Module):
    """Triplet loss with hard positive/negative mining.

    Reference:
    Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.

    Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.
    Args:
        margin (float): margin for triplet.
    """
    def __init__(self, margin=0.3):#三元组的阈值margin
        super(TripletLoss, self).__init__()
        self.margin = margin
        self.ranking_loss = nn.MarginRankingLoss(margin=margin)#三元组损失函数
        #ap an margin y:倍率   Relu(ap - anxy + margin)这个relu就起到和0比较的作用

    def forward(self, inputs, targets):
        """
        Args:
            inputs: visualization_feature_map matrix with shape (batch_size, feat_dim)#32x2048
            targets: ground truth labels with shape (num_classes)#tensor([32])[1,1,1,1,2,3,2,,,,2]32个数,一个数代表ID的真实标签
        """
        n = inputs.size(0)#取出输入的batch
        # Compute pairwise distance, replace by the official when merged
        #计算距离矩阵,其实就是计算两个2048维之间的距离平方(a-b)**2=a^2+b^2-2ab
        #[1,2,3]*[1,2,3]=[1,4,9].sum()=14  点乘

        dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)
        dist = dist + dist.t()
        dist.addmm_(1, -2, inputs, inputs.t())#生成距离矩阵32x32,.t()表示转置
        dist = dist.clamp(min=1e-12).sqrt()  # for numerical stability#clamp(min=1e-12)加这个防止矩阵中有0,对梯度下降不好
        # For each anchor, find the hardest positive and negative
        mask = targets.expand(n, n).eq(targets.expand(n, n).t())#利用target标签的expand,并eq,获得mask的范围,由01组成,,红色1表示是同一个人,绿色0表示不是同一个人
        dist_ap, dist_an = [], []#用来存放ap,an
        for i in range(n):#i表示行
            # dist[i][mask[i]],,i=0时,取mask的第一行,取距离矩阵的第一行,然后得到tensor([1.0000e-06, 1.0000e-06, 1.0000e-06, 1.0000e-06])
            dist_ap.append(dist[i][mask[i]].max().unsqueeze(0))#取某一行中,红色区域的最大值,mask前4个是1,与dist相乘
            dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0))#取某一行,绿色区域的最小值,加一个.unsqueeze(0)将其变成带有维度的tensor
        dist_ap = torch.cat(dist_ap)
        dist_an = torch.cat(dist_an)
        # Compute ranking hinge loss
        y = torch.ones_like(dist_an)#y是个权重,长度像dist-an
        loss = self.ranking_loss(dist_an, dist_ap, y) #ID损失:交叉商输入的是32xf f.shape=分类数,然后loss用于计算损失
                                                      #度量三元组:输入的是dist_an(从距离矩阵中,挑出一行(即一个ID)的最大距离),dist_ap
                                                     #ranking_loss输入 an ap margin y:倍率  loss: Relu(ap - anxy + margin)这个relu就起到和0比较的作用
        # from IPython import embed
        # embed()
        return loss

class MultiSimilarityLoss(nn.Module):
    def __init__(self, margin=0.7):
        super(MultiSimilarityLoss, self).__init__()
        self.thresh = 0.5
        self.margin = margin

        self.scale_pos = 2.0
        self.scale_neg = 40.0

    def forward(self, feats, labels):
        assert feats.size(0) == labels.size(0), \
            f"feats.size(0): {feats.size(0)} is not equal to labels.size(0): {labels.size(0)}"
        batch_size = feats.size(0)
        feats = nn.functional.normalize(feats, p=2, dim=1)

        # Shape: batchsize * batch size
        sim_mat = torch.matmul(feats, torch.t(feats))

        epsilon = 1e-5
        loss = list()

        mask = labels.expand(batch_size, batch_size).eq(
            labels.expand(batch_size, batch_size).t())
        for i in range(batch_size):
            pos_pair_ = sim_mat[i][mask[i]]
            pos_pair_ = pos_pair_[pos_pair_ < 1 - epsilon]
            neg_pair_ = sim_mat[i][mask[i] == 0]

            neg_pair = neg_pair_[neg_pair_ + self.margin > min(pos_pair_)]
            pos_pair = pos_pair_[pos_pair_ - self.margin < max(neg_pair_)]

            if len(neg_pair) < 1 or len(pos_pair) < 1:
                continue

            # weighting step
            pos_loss = 1.0 / self.scale_pos * torch.log(
                1 + torch.sum(torch.exp(-self.scale_pos * (pos_pair - self.thresh))))
            neg_loss = 1.0 / self.scale_neg * torch.log(
                1 + torch.sum(torch.exp(self.scale_neg * (neg_pair - self.thresh))))
            loss.append(pos_loss + neg_loss)
            # pos_loss =


        if len(loss) == 0:
            return torch.zeros([], requires_grad=True, device=feats.device)

        loss = sum(loss) / batch_size
        return loss


if __name__ == '__main__':
    #测试TripletLoss(nn.Module)
    use_gpu = False
    model = TripletLoss()
    features = torch.rand(32, 2048)
    label= torch.Tensor([1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5, 5, 5,  5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8,8]).long()
    loss = model(features, label)
    print(loss)

不可梯度优化

你可能感兴趣的:(pytorch,人工智能,python)