学习:sql 利用索引优化性能

 

人们在使用sql时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略了不同的实现方法之间可能存在的

性能差异,这种性能差异在大型的或是复杂的数据库环境中(如联机事务处理oltp或决策支持系统dss)中表现得尤为明

显。笔者在工作实践中发现,不良的sql往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。在对

它们进行适当的优化后,其运行速度有了明显地提高!下面我将从这三个方面分别进行总结:

 

  为了更直观地说明问题,所有实例中的sql运行时间均经过测试,不超过1秒的均表示为(< 1秒)。

 

  测试环境--

  主机:hp lh ii

  主频:mhz

  内存:兆

  操作系统:operserver5.0.4

  数据库:sybase11.0.3

 

  一、不合理的索引设计

  例:表record有行,试看在不同的索引下,下面几个sql的运行情况:

  .date上建有一个非群集索引

 

  select count(*) from record where date >'19991201' and date < '19991214'and amount >2000 (25)

  select date,sum(amount) from record group by date(55)

  select count(*) from record where date >'19990901' and place in ('bj','sh') (27)

 

  分析:

  date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。

 

  .date上的一个群集索引

 

  select count(*) from record where date >'19991201' and date < '19991214' and amount >2000(秒)

  select date,sum(amount) from record group by date(秒)

  select count(*) from record where date >'19990901' and place in ('bj','sh')(秒)

 

  分析:

  在群集索引下,数据在物理上按顺序在数据页上,重复值也排列在一起,因而在范围查找时,可以先找到这个范围的起末点,且只在这个范围内扫描数据页,避免了大范围扫描,提高了查询速度。

 

  .placedateamount上的组合索引

 

  select count(*) from record where date >'19991201' and date < '19991214' and amount >2000(秒)

  select date,sum(amount) from record group by date(秒)

  select count(*) from record where date >'19990901' and place in ('bj, 'sh')< 1秒)'

 

  分析:

  这是一个不很合理的组合索引,因为它的前导列是place,第一和第二条sql没有引用place,因此也没有利用上索引;第三个sql使用了place,且引用的所有列都包含在组合索引中,形成了索引覆盖,所以它的速度是非常快的。

 

  .dateplaceamount上的组合索引

  select count(*) from record where date >'19991201' and date < '19991214' and amount >2000(< 1)

  select date,sum(amount) from record group by date(秒)

  select count(*) from record where date >'19990901' and place in ('bj','sh')< 1秒)

 

  分析:

  这是一个合理的组合索引。它将date作为前导列,使每个sql都可以利用索引,并且在第一和第三个sql中形成了索引覆盖,因而性能达到了最优。

 

  .总结:

 

  缺省情况下建立的索引是非群集索引,但有时它并不是最佳的;合理的索引设计要建立在对各种查询的分析和预测上。一般来说:

  .有大量重复值、且经常有范围查询

  (between, >,< >=,< =)和order bygroup by发生的列,可考虑建立群集索引;

 

  .经常同时存取多列,且每列都含有重复值可考虑建立组合索引;

 

  .组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列

 

  二、不充份的连接条件:

  例:表card有行,在card_no上有一个非聚集索引,表account有行,在account_no上有一个非聚集索引,试看在不同的表连接条件下,两个sql的执行情况:

 

  select sum(a.amount) from account a,card b where a.card_no = b.card_no(秒)

 

  将sql改为:

  select sum(a.amount) from account a,card b where a.card_no = b.card_no and a.account_no=b.account_no< 1秒)

 

  分析:

  在第一个连接条件下,最佳查询方案是将account作外层表,card作内层表,利用card上的索引,其i/o次数可由以下公式估算为:

 

  外层表account上的页+(外层表account的行*内层表card上对应外层表第一行所要查找的页)=595907i/o

 

  在第二个连接条件下,最佳查询方案是将card作外层表,account作内层表,利用account上的索引,其i/o次数可由以下公式估算为:

 

  外层表card上的页+(外层表card的行*内层表account上对应外层表每一行所要查找的页)= 33528i/o

 

  可见,只有充份的连接条件,真正的最佳方案才会被执行。

 

  总结:

 

  .多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方案并从中找出系统开销最小的最佳方案。连接条件要充份考虑带有索引的表、行数多的表;内外表的选择可由公式:外层表中的匹配行数*内层表中每一次查找的次数确定,乘积最小为最佳方案。

 

  .查看执行方案的方法-- set showplanon,打开showplan选项,就可以看到连接顺序、使用何种索引的信息;想

看更详细的信息,需用sa角色执行dbcc(3604,310,302)

 

  三、不可优化的where子句

  .例:下列sql条件语句中的列都建有恰当的索引,但执行速度却非常慢:

 

  select * from record where substring(card_no,1,4)='5378'(13)

  select * from record where amount/30< 1000(秒)

  select * from record where convert(char(10),date,112)='19991201'(秒)

 

  分析:

  where子句中对列的任何操作结果都是在sql运行时逐列计算得到的,因此它不得不进行表搜索,而没有使用该列上面的索引;如果这些结果在查询编译时就能得到,那么就可以被sql优化器优化,使用索引,避免表搜索,因此将sql重写成

下面这样:

 

  select * from record where card_no like '5378%'< 1秒)

  select * from record where amount < 1000*30< 1秒)

  select * from record where date= '1999/12/01' < 1秒)

你会发现sql明显快起来!

  .例:表stuff有行,id_no上有非群集索引,请看下面这个sql

 

  select count(*) from stuff where id_no in('0','1')(秒)

 

  分析:

  where条件中的'in'在逻辑上相当于'or',所以语法分析器会将in ('0','1')转化为id_no ='0' or id_no='1'来执行。我们期望它会根据每个or子句分别查找,再将结果相加,这样可以利用id_no上的索引;但实际上(根据showplan,它却采用了"or策略",即先取出满足每个or子句的行,存入临时数据库的工作表中,再建立唯一索引以去掉重复行,最后从这个临时表中计算结果。因此,实际过程没有利用id_no上索引,并且完成时间还要受tempdb数据库性能的影响。

  实践证明,表的行数越多,工作表的性能就越差,当stuff有行时,执行时间竟达到秒!还不如将or子句分开:

 

  select count(*) from stuff where id_no='0'

  select count(*) from stuff where id_no='1'

 

  得到两个结果,再作一次加法合算。因为每句都使用了索引,执行时间只有秒,在行下,时间也只有秒。或者,用更好的方法,写一个简单的存储过程:

  create proc count_stuff as

  declare @a int

  declare @b int

  declare @c int

  declare @d char(10)

  begin

  select @a=count(*) from stuff where id_no='0'

  select @b=count(*) from stuff where id_no='1'

  end

  select @c=@a+@b

  select @d=convert(char(10),@c)

  print @d

 

  直接算出结果,执行时间同上面一样快!

  总结:

 

  可见,所谓优化即where子句利用了索引,不可优化即发生了表扫描或额外开销。

 

  .任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。

 

  .inor子句常会使用工作表,使索引失效;如果不产生大量重复值,可以考虑把子句拆开;拆开的子句中应该包含索引。

 

  .要善于使用存储过程,它使sql变得更加灵活和高效。

 

  从以上这些例子可以看出,sql优化的实质就是在结果正确的前提下,用优化器可以识别的语句,充份利用索引,减少表扫描的i/o次数,尽量避免表搜索的发生。其实sql的性能优化是一个复杂的过程,上述这些只是在应用层次的一种体现,深入研究还会涉及数据库层的资源配置、网络层的流量控制以及操作系统层的总体设计

 


文章出自: http://hi.baidu.com/ben19850410/blog/item/34cf2e4efd790f0fb3de05a0.html 

你可能感兴趣的:(sql)