py-faster-rcnn编译过程中的问题记录

博主系统环境如下:

py-faster-rcnn编译过程中的问题记录_第1张图片
这里写图片描述

编译py-faster-rcnn

参考如下:

  • caffe官网
  • py-faster-rnn源码github
  • 博客:搭建faster-rcnn进行目标检测的环境
  • 论坛:faster RCNN python 安装

编译步骤:

  • 从github上下载源码
#cd 进入自己放置faster rcnn位置
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
 
 
   
   
   
   
  • 1
  • 2
  • 1
  • 2

建议加上–recursive,这样可以一并下载caffe-faster-rcnn包

  • 生成Cython模块 
    修改py-faster-rcnn/lib/setup.py文件第135行: 
    ‘nvcc’: [‘-arch=sm_35’,

根据自己的显卡计算能力进行修改,查询网址为: CUDA-Enabled GeForce Products 
py-faster-rcnn编译过程中的问题记录_第2张图片
博主机子是GeForce GTX 980,所以这里我改成了52 
这里写图片描述 
然后:

$ py-faster-rcnn/lib
make   #make -j8
 
 
   
   
   
   
  • 1
  • 2
  • 1
  • 2
  • 生成Caffe和pycaffe
$ py-faster-rcnn/caffe-fast-rnn
cp Makefile.config.example Makefile.config
 
 
   
   
   
   
  • 1
  • 2
  • 1
  • 2

Makefile.config文件博主的如下:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#       You should not set this flag if you will be reading LMDBs with any
#       possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
                -gencode arch=compute_20,code=sm_21 \
                -gencode arch=compute_30,code=sm_30 \
                -gencode arch=compute_35,code=sm_35 \
                -gencode arch=compute_50,code=sm_50 \
                -gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
                /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := /usr/local/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
                $(ANACONDA_HOME)/include/python2.7 \
                $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @
 
 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112

保存退出。 
终端输入:

$ py-faster-rcnn/caffe-fast-rnn
mkdir build
cd build
cmake ..
make -j8  
make test
make runtest 
make pycaffe
 
 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

问题

但博主在make -j8的时候,报以下错误:

py-faster-rcnn编译过程中的问题记录_第3张图片
全都是和cudnn有关,错误个数非常多。因为faster-rcnn的caffe所用的cudnn为旧版本的,与我的cudnn版本(v5.1)不兼容,导致出现如上错误。所以这里我们需要修改cudnn加速文件

  1. py-faster-rcnn/caffe-fast-rcnn/include/caffe/util/cudnn.hpp
  2. py-faster-rcnn/caffe-fast-rcnn/src/caffe/util/cudnn.cpp
  3. py-faster-rcnn/caffe-fast-rcnn/include/caffe/layers/目录下8个cudnn_开头的文件
  4. py-faster-rcnn/caffe-fast-rcnn/src/caffe/layers/ 目录下16个cudnn_开头的文件

将以上文件用选择caffe-master版的相应文件进行替换,这样编译就不会出错啦。(亲测有效)

还遇到这个问题: 
py-faster-rcnn编译过程中的问题记录_第4张图片
执行第一次时,发现后面还会再出现这类问题,所以我又执行了一次,下一次就可以正常了。 
参考方法: 
caffe配置问题与解决方法集锦 
使用caffe时编译出错

后面执行demo.py的时候会遇到: 
这里写图片描述
解决办法: 
这里写图片描述

发现找不到pip和easy_install,所以需要安装如下:

sudo apt-get install python-setuptools
 
 
   
   
   
   
  • 1
  • 1

py-faster-rcnn编译过程中的问题记录_第5张图片

再执行:

sudo easy_install pip
 
 
   
   
   
   
  • 1
  • 1

py-faster-rcnn编译过程中的问题记录_第6张图片

最后执行:

sudo pip install easydict
 
 
   
   
   
   
  • 1
  • 1

py-faster-rcnn编译过程中的问题记录_第7张图片

终结

  • 运行demo.py
$ py-faster-rcnn/tools
./demo.py #或者 python demo.py
 
 
   
   
   
   
  • 1
  • 2
  • 1
  • 2

py-faster rcnn训练自己的数据

参考: 
将数据集做成VOC2007格式用于Faster-RCNN训练 
Faster-RCNN+ZF用自己的数据集训练模型(Python版本)

你可能感兴趣的:(Faster,Rcnn)