简单so加密app案例(一)

前言

在写so的加密和解密之前,我们需要具备的是对so文件(elf文件)的格式解析一定要有足够的熟悉!

elf文件格式解析文章:

ELF探究 之 ELF文件介绍(一) - 简书

[原创] ELF文件格式解析器 原理 + 代码-编程技术-看雪论坛-安全社区|安全招聘|bbs.pediy.com

ELF文件格式解析_mergerly的博客-CSDN博客_elf文件格式详解

https://www.52pojie.cn/forum.php?mod=viewthread&tid=1282554&extra=&highlight=elf&page=1

https://www.52pojie.cn/forum.php?mod=viewthread&tid=591986&extra=&highlight=elf%CE%C4%BC%FE&page=1

除了对于理论的熟悉,我们还要实操下,自己写一个readelf功能的c/c++程序,(当然python,java也可以,你开心就好),以加深对elf格式的理解。

正文

(一)对简单so加密实例一(基于特定section的加解密)的一个详细描述

本篇的简单so加密的参考实例来源于:

[原创]简单粗暴的so加解密实现-Android安全-看雪论坛-安全社区|安全招聘|bbs.pediy.com


基于section的加解密,是指将so文件的特定section进行加密,so文件被加载时解密。
需要编写的一个app,调用一个native方法返回一个字符串供UI显示。在native方法中,又调用getString方法返回一个字符串供native方法返回。我们需要将getString方法加密。这里,将getString方法存放在.mytext中(指定__attribute__((section (".mytext")));),即我们需要对.mytext进行加密。
加密流程:
1)  从so文件头读取section偏移shoff、shnum和shstrtab
2)  读取shstrtab中的字符串,存放在str空间中
3)  从shoff位置开始读取section header, 存放在shdr
4)  通过shdr -> sh_name 在str字符串中索引,与.mytext进行字符串比较,如果不匹配,继续读取
5)  通过shdr -> sh_offset 和 shdr -> sh_size字段,将.mytext内容读取并保存在content中。
6)  为了便于理解,不使用复杂的加密算法。这里,只将content的所有内容取反,即 *content = ~(*content);
7)  将content内容写回so文件中
8)  为了验证第二节中关于section 字段可以任意修改的结论,这里,将shdr -> addr 写入ELF头e_shoff,将shdr -> sh_size 和 addr 所在内存块写入e_entry中,即ehdr.e_entry = (length << 16) + nsize。当然,这样同时也简化了解密流程,还有一个好处是:如果将so文件头修正放回去,程序是不能运行的。

解密流程:
需要保证解密函数在so加载时被调用,那就需要使用:__attribute__((constructor))。(也可以使用c++构造器实现, 其本质也是用attribute实现)
解密流程:
1)  动态链接器通过call_array调用init_getString
2)  Init_getString首先调用getLibAddr方法,得到so文件在内存中的起始地址
3)  读取前52字节,即ELF头。通过e_shoff获得.mytext内存加载地址,ehdr.e_entry获取.mytext大小和所在内存块
4)  修改.mytext所在内存块的读写权限
5)  将[e_shoff, e_shoff + size]内存区域数据解密,即取反操作:*content = ~(*content);
6)  修改回内存区域的读写权限
(这里是对代码段的数据进行解密,需要写权限。如果对数据段的数据解密,是不需要更改权限直接操作的)

(二)编写一个正常so的app

这个so里有解密程序。

我用的是as创建一个native c++工程。

结构目录如下:

简单so加密app案例(一)_第1张图片

CMakeLists.txt代码如下:

cmake_minimum_required(VERSION 3.4.1)


#设置生成的so动态库最后输出的路径
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/../jniLibs/${ANDROID_ABI})


add_library( 
        demo

        SHARED

        demo.cpp)

find_library(
        log-lib

        log)

target_link_libraries(
        demo

        ${log-lib})

demo.cpp代码如下:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "mylog.h"

#define __init_array __attribute__((constructor))


jstring __attribute__((section (".mytext"))) getString(JNIEnv *env) {
    LOGI("加载成功111111!!!");
    return env->NewStringUTF("Native method return!");
};


unsigned long getLibAddr() {
    unsigned long addr = 0;
    char name[] = "libdemo.so";
    char buf[4096];
    int pid;
    FILE *fp;
    pid = getpid();
    sprintf(buf, "/proc/%d/maps", pid);
    fp = fopen(buf, "r");
    if (fp == NULL) {
        LOGI("open %s failed", buf);
        goto _error;
    }
    while (fgets(buf, sizeof(buf), fp)) {                     
        if (strstr(buf, name)) {                              
            char *temp = strtok(buf, "-");           
            addr = strtoul(temp, NULL, 16); 
            break;
        }
    }
    _error:
    fclose(fp);
    return addr;
}

void __init_array init_getString() {
    char name[15];
    unsigned int nblock;
    unsigned int nsize;
    unsigned long base;
    unsigned long text_addr;
    unsigned int i;
    Elf32_Ehdr *ehdr;
    Elf32_Shdr *shdr;
    Elf32_Addr e_entry;

    base = getLibAddr();

    ehdr = (Elf32_Ehdr *) base;
    text_addr = ehdr->e_shoff + base;

    e_entry = ehdr->e_entry;
    nblock = e_entry >> 16;
    nsize = e_entry & 0xffff;

    LOGI("base:0x%x  nblock:0x%x  nsize:0x%x", base, nblock, nsize);

    if (e_entry) {
        if (mprotect((void *) base, 4096 * nsize, PROT_READ | PROT_EXEC | PROT_WRITE) != 0) {
            LOGI("mem privilege change failed");
        }

        for (i = 0; i < nblock; i++) {
            char *addr = (char *) (text_addr + i);
            *addr = ~(*addr);
            LOGI("addr:%x", *addr);
        }

        if (mprotect((void *) base, 4096 * nsize, PROT_READ | PROT_EXEC) != 0) {
            LOGI("mem privilege change failed");
        }
        LOGI("Decrypt success");
    } else {
        LOGI("the so is not encrypted");
    }

}


extern "C" JNIEXPORT jstring JNICALL
Java_com_encode_sofile_MainActivity_getString(JNIEnv *env, jobject thiz) {
    return getString(env);
}




mylog.h代码如下:

#include 

#ifndef MYLOG_H
#define MYLOG_H
/*
 * 添加日志打印
 */

#define TAG "testApp" // 这个是自定义的标识
#define LOGD(...) __android_log_print(ANDROID_LOG_DEBUG,TAG ,__VA_ARGS__)
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO,TAG ,__VA_ARGS__)
#define LOGW(...) __android_log_print(ANDROID_LOG_WARN,TAG ,__VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,TAG ,__VA_ARGS__)
#define LOGF(...) __android_log_print(ANDROID_LOG_FATAL,TAG ,__VA_ARGS__)


#endif //MYLOG_H

MainActivity.java如下:

package com.encode.sofile;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
    static {
        System.loadLibrary("demo");
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        // Example of a call to a native method
        TextView tv = findViewById(R.id.sample_text);
        tv.setText(getString());
    }

    public native String getString();
}

build.gradle代码如下:

apply plugin: 'com.android.application'

android {
    compileSdkVersion 30
    buildToolsVersion "30.0.2"

    defaultConfig {
        applicationId "com.encode.sofile"
        minSdkVersion 21
        targetSdkVersion 30
        versionCode 1
        versionName "1.0"

        testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
        externalNativeBuild {
            cmake {
                cppFlags ""
            }
        }
        ndk {
            ldLibs "log"           //实现__android_log_print
            // 设置支持的so构架
            abiFilters 'armeabi-v7a'//, 'arm64-v8a'// , 'x86', 'x86_64'
        }
    }

    buildTypes {
        release {
            minifyEnabled false
            proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
        }
    }
    externalNativeBuild {
        cmake {
            path "src/main/cpp/CMakeLists.txt"
            version "3.10.2"
        }
    }
    //解决:在增加多个cpp后,编译时出现More than one file was found with OS independent path 'lib/arm64-v8a/libnative-two.so'问题,添加如下代码
    packagingOptions {
        pickFirst 'lib/armeabi-v7a/libdemo.so'
    }

}

dependencies {
    implementation fileTree(dir: "libs", include: ["*.jar"])
    implementation 'androidx.appcompat:appcompat:1.2.0'
    implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
    testImplementation 'junit:junit:4.12'
    androidTestImplementation 'androidx.test.ext:junit:1.1.2'
    androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

}

运行安装,不出意外,日志将打印

com.encode.sofile I/testApp: base:0xf4274000  nblock:0x0  nsize:0x0
com.encode.sofile I/testApp: the so is not encrypted
com.encode.sofile I/testApp: 加载成功111111!!!

并且app正常加载。

我们发现在目录下会自动生成 jniLibs/armeabi-v7a/libdemo.so ,它有152kb。

当我们解压 build/outputs/apk/debug/app-debug.apk,发现它的libdemo.so只有14kb。通过解析elf,发现自动生成的多了一些debug相关的section。所以我用的是解压apk后得到的libdemo.so,毕竟能小就小嘛。

(三)编写加密脚本

我用的是clion创建一个c++工程

encryptSection.cpp代码如下:

#include 
#include 
#include "elf.h"
#include 

int encryptAssignSection(FILE *fp);


int main() {
    FILE *fp = fopen("./lib/libdemo.so", "rb+"); // 这个so是解压apk后得到的so
    if (fp == NULL) {
        printf("打开文件失败");
        return 0;  //空指针则返回0,文件打开失败
    }
    encryptAssignSection(fp);
}


int encryptAssignSection(FILE *fp) {
    Elf32_Ehdr elfHeader;
    Elf32_Shdr shstrtab;
    Elf32_Shdr sectionTabElemnt;

    char target_section[] = ".mytext"; //   记得修改它!!!!!
    int target_section_offset = 0, target_section_size = 0;


    fread(&elfHeader, sizeof(Elf32_Ehdr), 1, fp);
    printf("e_shoff:0x%x  e_shstrndx:0x%x\n", elfHeader.e_shoff, elfHeader.e_shstrndx);


    fseek(fp, elfHeader.e_shoff + elfHeader.e_shentsize * elfHeader.e_shstrndx, SEEK_SET);
    fread(&shstrtab, elfHeader.e_shentsize, 1, fp);
    printf("shstrtab sh_name:0x%x  sh_offset:0x%x\n", shstrtab.sh_name, shstrtab.sh_offset);

    char *shstrtab_data = (char *) malloc(shstrtab.sh_size);
    memset(shstrtab_data, 0, shstrtab.sh_size);


    fseek(fp, shstrtab.sh_offset, SEEK_SET);
    fread(shstrtab_data, shstrtab.sh_size, 1, fp);


    fseek(fp, elfHeader.e_shoff, SEEK_SET);

    for (int i = 0; i < elfHeader.e_shnum; ++i) {
        fread(§ionTabElemnt, sizeof(Elf32_Shdr), 1, fp);
        if (strcmp(shstrtab_data + sectionTabElemnt.sh_name, target_section) == 0) {
            target_section_offset = sectionTabElemnt.sh_offset;
            target_section_size = sectionTabElemnt.sh_size;
            printf("Find target section: %s  sh_offset:0x%x  sh_size:0x%x\n", target_section, target_section_offset, target_section_size);
            break;
        }
    }
    free(shstrtab_data);


    fseek(fp, target_section_offset, SEEK_SET);
    char *content = (char *) malloc(target_section_size);
    memset(content, 0, target_section_size);
    fread(content, target_section_size, 1, fp);
    printf("原始:");
    for (int j = 0; j < target_section_size; j++) {
        printf("%x ", content[j] & 0x000000ff);
        content[j] = ~content[j];
    }
    printf("\n现在:");
    for (int j = 0; j < target_section_size; j++) {
        printf("%x ", content[j] & 0x000000ff);
    }
    printf("\n");
    fseek(fp, target_section_offset, SEEK_SET);
    int ws = fwrite(content, 1, target_section_size, fp);
//    printf("%d %d\n", ws, target_section_size);
    ws == target_section_size ? printf("write section OK\n") : printf("write section Faile\n");

    unsigned char block_size = 16;
    unsigned short nblock = target_section_size / block_size;
    unsigned short nsize = target_section_offset / 4096 + (target_section_offset % 4096 == 0 ? 0 : 1);
    printf("nblock:%d, nsize:%d\n", nblock, nsize);
    elfHeader.e_entry = (target_section_size << 16) + nsize;
    elfHeader.e_shoff = target_section_offset;
    fseek(fp, 0, SEEK_SET);
    int we = fwrite(&elfHeader, 1, sizeof(Elf32_Ehdr), fp);
    we == sizeof(Elf32_Ehdr) ? printf("write elfHeader OK\n") : printf("write elfHeader Faile\n");
    (ws == target_section_size && we == sizeof(Elf32_Ehdr)) ? printf("Completed successfully") : printf("Completed failed");


    free(content);
    fclose(fp);
    return 1;


}



elf.h代码如下:


#ifndef ELF_H
#define ELF_H

#include 
#include 

typedef uint32_t Elf32_Addr; // Program address
typedef uint32_t Elf32_Off;  // File offset
typedef uint16_t Elf32_Half;
typedef uint32_t Elf32_Word;
typedef int32_t  Elf32_Sword;

typedef uint64_t Elf64_Addr;
typedef uint64_t Elf64_Off;
typedef uint16_t Elf64_Half;
typedef uint32_t Elf64_Word;
typedef int32_t  Elf64_Sword;
typedef uint64_t Elf64_Xword;
typedef int64_t  Elf64_Sxword;

// Object file magic string.
static constexpr char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };

// e_ident size and indices.
enum {
    EI_MAG0       = 0,          // File identification index.
    EI_MAG1       = 1,          // File identification index.
    EI_MAG2       = 2,          // File identification index.
    EI_MAG3       = 3,          // File identification index.
    EI_CLASS      = 4,          // File class.
    EI_DATA       = 5,          // Data encoding.
    EI_VERSION    = 6,          // File version.
    EI_OSABI      = 7,          // OS/ABI identification.
    EI_ABIVERSION = 8,          // ABI version.
    EI_PAD        = 9,          // Start of padding bytes.
    EI_NIDENT     = 16          // Number of bytes in e_ident.
};

// BEGIN android-added for  compat
constexpr char ELFMAG0 = ElfMagic[EI_MAG0];
constexpr char ELFMAG1 = ElfMagic[EI_MAG1];
constexpr char ELFMAG2 = ElfMagic[EI_MAG2];
constexpr char ELFMAG3 = ElfMagic[EI_MAG3];
constexpr char ELFMAG[] = "\177ELF";
constexpr int SELFMAG = 4;
constexpr int NT_PRSTATUS = 1;
// END android-added for  compat

struct Elf32_Ehdr {
    unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
    Elf32_Half    e_type;      // Type of file (see ET_* below)
    Elf32_Half    e_machine;   // Required architecture for this file (see EM_*)
    Elf32_Word    e_version;   // Must be equal to 1
    Elf32_Addr    e_entry;     // Address to jump to in order to start program
    Elf32_Off     e_phoff;     // Program header table's file offset, in bytes
    Elf32_Off     e_shoff;     // Section header table's file offset, in bytes
    Elf32_Word    e_flags;     // Processor-specific flags
    Elf32_Half    e_ehsize;    // Size of ELF header, in bytes
    Elf32_Half    e_phentsize; // Size of an entry in the program header table
    Elf32_Half    e_phnum;     // Number of entries in the program header table
    Elf32_Half    e_shentsize; // Size of an entry in the section header table
    Elf32_Half    e_shnum;     // Number of entries in the section header table
    Elf32_Half    e_shstrndx;  // Sect hdr table index of sect name string table
    bool checkMagic() const {
        return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
    }
    unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
    unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};

// 64-bit ELF header. Fields are the same as for ELF32, but with different
// types (see above).
struct Elf64_Ehdr {
    unsigned char e_ident[EI_NIDENT];
    Elf64_Half    e_type;
    Elf64_Half    e_machine;
    Elf64_Word    e_version;
    Elf64_Addr    e_entry;
    Elf64_Off     e_phoff;
    Elf64_Off     e_shoff;
    Elf64_Word    e_flags;
    Elf64_Half    e_ehsize;
    Elf64_Half    e_phentsize;
    Elf64_Half    e_phnum;
    Elf64_Half    e_shentsize;
    Elf64_Half    e_shnum;
    Elf64_Half    e_shstrndx;
    bool checkMagic() const {
        return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
    }
    unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
    unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};

// File types
enum {
    ET_NONE   = 0,      // No file type
    ET_REL    = 1,      // Relocatable file
    ET_EXEC   = 2,      // Executable file
    ET_DYN    = 3,      // Shared object file
    ET_CORE   = 4,      // Core file
    ET_LOPROC = 0xff00, // Beginning of processor-specific codes
    ET_HIPROC = 0xffff  // Processor-specific
};

// Versioning
enum {
    EV_NONE = 0,
    EV_CURRENT = 1
};

// Machine architectures
enum {
    EM_NONE          = 0, // No machine
    EM_M32           = 1, // AT&T WE 32100
    EM_SPARC         = 2, // SPARC
    EM_386           = 3, // Intel 386
    EM_68K           = 4, // Motorola 68000
    EM_88K           = 5, // Motorola 88000
    EM_486           = 6, // Intel 486 (deprecated)
    EM_860           = 7, // Intel 80860
    EM_MIPS          = 8, // MIPS R3000
    EM_S370          = 9, // IBM System/370
    EM_MIPS_RS3_LE   = 10, // MIPS RS3000 Little-endian
    EM_PARISC        = 15, // Hewlett-Packard PA-RISC
    EM_VPP500        = 17, // Fujitsu VPP500
    EM_SPARC32PLUS   = 18, // Enhanced instruction set SPARC
    EM_960           = 19, // Intel 80960
    EM_PPC           = 20, // PowerPC
    EM_PPC64         = 21, // PowerPC64
    EM_S390          = 22, // IBM System/390
    EM_SPU           = 23, // IBM SPU/SPC
    EM_V800          = 36, // NEC V800
    EM_FR20          = 37, // Fujitsu FR20
    EM_RH32          = 38, // TRW RH-32
    EM_RCE           = 39, // Motorola RCE
    EM_ARM           = 40, // ARM
    EM_ALPHA         = 41, // DEC Alpha
    EM_SH            = 42, // Hitachi SH
    EM_SPARCV9       = 43, // SPARC V9
    EM_TRICORE       = 44, // Siemens TriCore
    EM_ARC           = 45, // Argonaut RISC Core
    EM_H8_300        = 46, // Hitachi H8/300
    EM_H8_300H       = 47, // Hitachi H8/300H
    EM_H8S           = 48, // Hitachi H8S
    EM_H8_500        = 49, // Hitachi H8/500
    EM_IA_64         = 50, // Intel IA-64 processor architecture
    EM_MIPS_X        = 51, // Stanford MIPS-X
    EM_COLDFIRE      = 52, // Motorola ColdFire
    EM_68HC12        = 53, // Motorola M68HC12
    EM_MMA           = 54, // Fujitsu MMA Multimedia Accelerator
    EM_PCP           = 55, // Siemens PCP
    EM_NCPU          = 56, // Sony nCPU embedded RISC processor
    EM_NDR1          = 57, // Denso NDR1 microprocessor
    EM_STARCORE      = 58, // Motorola Star*Core processor
    EM_ME16          = 59, // Toyota ME16 processor
    EM_ST100         = 60, // STMicroelectronics ST100 processor
    EM_TINYJ         = 61, // Advanced Logic Corp. TinyJ embedded processor family
    EM_X86_64        = 62, // AMD x86-64 architecture
    EM_PDSP          = 63, // Sony DSP Processor
    EM_PDP10         = 64, // Digital Equipment Corp. PDP-10
    EM_PDP11         = 65, // Digital Equipment Corp. PDP-11
    EM_FX66          = 66, // Siemens FX66 microcontroller
    EM_ST9PLUS       = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
    EM_ST7           = 68, // STMicroelectronics ST7 8-bit microcontroller
    EM_68HC16        = 69, // Motorola MC68HC16 Microcontroller
    EM_68HC11        = 70, // Motorola MC68HC11 Microcontroller
    EM_68HC08        = 71, // Motorola MC68HC08 Microcontroller
    EM_68HC05        = 72, // Motorola MC68HC05 Microcontroller
    EM_SVX           = 73, // Silicon Graphics SVx
    EM_ST19          = 74, // STMicroelectronics ST19 8-bit microcontroller
    EM_VAX           = 75, // Digital VAX
    EM_CRIS          = 76, // Axis Communications 32-bit embedded processor
    EM_JAVELIN       = 77, // Infineon Technologies 32-bit embedded processor
    EM_FIREPATH      = 78, // Element 14 64-bit DSP Processor
    EM_ZSP           = 79, // LSI Logic 16-bit DSP Processor
    EM_MMIX          = 80, // Donald Knuth's educational 64-bit processor
    EM_HUANY         = 81, // Harvard University machine-independent object files
    EM_PRISM         = 82, // SiTera Prism
    EM_AVR           = 83, // Atmel AVR 8-bit microcontroller
    EM_FR30          = 84, // Fujitsu FR30
    EM_D10V          = 85, // Mitsubishi D10V
    EM_D30V          = 86, // Mitsubishi D30V
    EM_V850          = 87, // NEC v850
    EM_M32R          = 88, // Mitsubishi M32R
    EM_MN10300       = 89, // Matsushita MN10300
    EM_MN10200       = 90, // Matsushita MN10200
    EM_PJ            = 91, // picoJava
    EM_OPENRISC      = 92, // OpenRISC 32-bit embedded processor
    EM_ARC_COMPACT   = 93, // ARC International ARCompact processor (old
    // spelling/synonym: EM_ARC_A5)
    EM_XTENSA        = 94, // Tensilica Xtensa Architecture
    EM_VIDEOCORE     = 95, // Alphamosaic VideoCore processor
    EM_TMM_GPP       = 96, // Thompson Multimedia General Purpose Processor
    EM_NS32K         = 97, // National Semiconductor 32000 series
    EM_TPC           = 98, // Tenor Network TPC processor
    EM_SNP1K         = 99, // Trebia SNP 1000 processor
    EM_ST200         = 100, // STMicroelectronics (www.st.com) ST200
    EM_IP2K          = 101, // Ubicom IP2xxx microcontroller family
    EM_MAX           = 102, // MAX Processor
    EM_CR            = 103, // National Semiconductor CompactRISC microprocessor
    EM_F2MC16        = 104, // Fujitsu F2MC16
    EM_MSP430        = 105, // Texas Instruments embedded microcontroller msp430
    EM_BLACKFIN      = 106, // Analog Devices Blackfin (DSP) processor
    EM_SE_C33        = 107, // S1C33 Family of Seiko Epson processors
    EM_SEP           = 108, // Sharp embedded microprocessor
    EM_ARCA          = 109, // Arca RISC Microprocessor
    EM_UNICORE       = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
    // of Peking University
    EM_EXCESS        = 111, // eXcess: 16/32/64-bit configurable embedded CPU
    EM_DXP           = 112, // Icera Semiconductor Inc. Deep Execution Processor
    EM_ALTERA_NIOS2  = 113, // Altera Nios II soft-core processor
    EM_CRX           = 114, // National Semiconductor CompactRISC CRX
    EM_XGATE         = 115, // Motorola XGATE embedded processor
    EM_C166          = 116, // Infineon C16x/XC16x processor
    EM_M16C          = 117, // Renesas M16C series microprocessors
    EM_DSPIC30F      = 118, // Microchip Technology dsPIC30F Digital Signal
    // Controller
    EM_CE            = 119, // Freescale Communication Engine RISC core
    EM_M32C          = 120, // Renesas M32C series microprocessors
    EM_TSK3000       = 131, // Altium TSK3000 core
    EM_RS08          = 132, // Freescale RS08 embedded processor
    EM_SHARC         = 133, // Analog Devices SHARC family of 32-bit DSP
    // processors
    EM_ECOG2         = 134, // Cyan Technology eCOG2 microprocessor
    EM_SCORE7        = 135, // Sunplus S+core7 RISC processor
    EM_DSP24         = 136, // New Japan Radio (NJR) 24-bit DSP Processor
    EM_VIDEOCORE3    = 137, // Broadcom VideoCore III processor
    EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
    EM_SE_C17        = 139, // Seiko Epson C17 family
    EM_TI_C6000      = 140, // The Texas Instruments TMS320C6000 DSP family
    EM_TI_C2000      = 141, // The Texas Instruments TMS320C2000 DSP family
    EM_TI_C5500      = 142, // The Texas Instruments TMS320C55x DSP family
    EM_MMDSP_PLUS    = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
    EM_CYPRESS_M8C   = 161, // Cypress M8C microprocessor
    EM_R32C          = 162, // Renesas R32C series microprocessors
    EM_TRIMEDIA      = 163, // NXP Semiconductors TriMedia architecture family
    EM_HEXAGON       = 164, // Qualcomm Hexagon processor
    EM_8051          = 165, // Intel 8051 and variants
    EM_STXP7X        = 166, // STMicroelectronics STxP7x family of configurable
    // and extensible RISC processors
    EM_NDS32         = 167, // Andes Technology compact code size embedded RISC
    // processor family
    EM_ECOG1         = 168, // Cyan Technology eCOG1X family
    EM_ECOG1X        = 168, // Cyan Technology eCOG1X family
    EM_MAXQ30        = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
    EM_XIMO16        = 170, // New Japan Radio (NJR) 16-bit DSP Processor
    EM_MANIK         = 171, // M2000 Reconfigurable RISC Microprocessor
    EM_CRAYNV2       = 172, // Cray Inc. NV2 vector architecture
    EM_RX            = 173, // Renesas RX family
    EM_METAG         = 174, // Imagination Technologies META processor
    // architecture
    EM_MCST_ELBRUS   = 175, // MCST Elbrus general purpose hardware architecture
    EM_ECOG16        = 176, // Cyan Technology eCOG16 family
    EM_CR16          = 177, // National Semiconductor CompactRISC CR16 16-bit
    // microprocessor
    EM_ETPU          = 178, // Freescale Extended Time Processing Unit
    EM_SLE9X         = 179, // Infineon Technologies SLE9X core
    EM_L10M          = 180, // Intel L10M
    EM_K10M          = 181, // Intel K10M
    EM_AARCH64       = 183, // ARM AArch64
    EM_AVR32         = 185, // Atmel Corporation 32-bit microprocessor family
    EM_STM8          = 186, // STMicroeletronics STM8 8-bit microcontroller
    EM_TILE64        = 187, // Tilera TILE64 multicore architecture family
    EM_TILEPRO       = 188, // Tilera TILEPro multicore architecture family
    EM_CUDA          = 190, // NVIDIA CUDA architecture
    EM_TILEGX        = 191, // Tilera TILE-Gx multicore architecture family
    EM_CLOUDSHIELD   = 192, // CloudShield architecture family
    EM_COREA_1ST     = 193, // KIPO-KAIST Core-A 1st generation processor family
    EM_COREA_2ND     = 194, // KIPO-KAIST Core-A 2nd generation processor family
    EM_ARC_COMPACT2  = 195, // Synopsys ARCompact V2
    EM_OPEN8         = 196, // Open8 8-bit RISC soft processor core
    EM_RL78          = 197, // Renesas RL78 family
    EM_VIDEOCORE5    = 198, // Broadcom VideoCore V processor
    EM_78KOR         = 199, // Renesas 78KOR family
    EM_56800EX       = 200  // Freescale 56800EX Digital Signal Controller (DSC)
};

// Object file classes.
enum {
    ELFCLASSNONE = 0,
    ELFCLASS32 = 1, // 32-bit object file
    ELFCLASS64 = 2  // 64-bit object file
};

// Object file byte orderings.
enum {
    ELFDATANONE = 0, // Invalid data encoding.
    ELFDATA2LSB = 1, // Little-endian object file
    ELFDATA2MSB = 2  // Big-endian object file
};

// OS ABI identification.
enum {
    ELFOSABI_NONE = 0,          // UNIX System V ABI
    ELFOSABI_HPUX = 1,          // HP-UX operating system
    ELFOSABI_NETBSD = 2,        // NetBSD
    ELFOSABI_GNU = 3,           // GNU/Linux
    ELFOSABI_LINUX = 3,         // Historical alias for ELFOSABI_GNU.
    ELFOSABI_HURD = 4,          // GNU/Hurd
    ELFOSABI_SOLARIS = 6,       // Solaris
    ELFOSABI_AIX = 7,           // AIX
    ELFOSABI_IRIX = 8,          // IRIX
    ELFOSABI_FREEBSD = 9,       // FreeBSD
    ELFOSABI_TRU64 = 10,        // TRU64 UNIX
    ELFOSABI_MODESTO = 11,      // Novell Modesto
    ELFOSABI_OPENBSD = 12,      // OpenBSD
    ELFOSABI_OPENVMS = 13,      // OpenVMS
    ELFOSABI_NSK = 14,          // Hewlett-Packard Non-Stop Kernel
    ELFOSABI_AROS = 15,         // AROS
    ELFOSABI_FENIXOS = 16,      // FenixOS
    ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
    ELFOSABI_C6000_LINUX = 65,  // Linux TMS320C6000
    ELFOSABI_ARM = 97,          // ARM
    ELFOSABI_STANDALONE = 255   // Standalone (embedded) application
};

// X86_64 relocations.
enum {
    R_X86_64_NONE       = 0,
    R_X86_64_64         = 1,
    R_X86_64_PC32       = 2,
    R_X86_64_GOT32      = 3,
    R_X86_64_PLT32      = 4,
    R_X86_64_COPY       = 5,
    R_X86_64_GLOB_DAT   = 6,
    R_X86_64_JUMP_SLOT  = 7,
    R_X86_64_RELATIVE   = 8,
    R_X86_64_GOTPCREL   = 9,
    R_X86_64_32         = 10,
    R_X86_64_32S        = 11,
    R_X86_64_16         = 12,
    R_X86_64_PC16       = 13,
    R_X86_64_8          = 14,
    R_X86_64_PC8        = 15,
    R_X86_64_DTPMOD64   = 16,
    R_X86_64_DTPOFF64   = 17,
    R_X86_64_TPOFF64    = 18,
    R_X86_64_TLSGD      = 19,
    R_X86_64_TLSLD      = 20,
    R_X86_64_DTPOFF32   = 21,
    R_X86_64_GOTTPOFF   = 22,
    R_X86_64_TPOFF32    = 23,
    R_X86_64_PC64       = 24,
    R_X86_64_GOTOFF64   = 25,
    R_X86_64_GOTPC32    = 26,
    R_X86_64_GOT64      = 27,
    R_X86_64_GOTPCREL64 = 28,
    R_X86_64_GOTPC64    = 29,
    R_X86_64_GOTPLT64   = 30,
    R_X86_64_PLTOFF64   = 31,
    R_X86_64_SIZE32     = 32,
    R_X86_64_SIZE64     = 33,
    R_X86_64_GOTPC32_TLSDESC = 34,
    R_X86_64_TLSDESC_CALL    = 35,
    R_X86_64_TLSDESC    = 36,
    R_X86_64_IRELATIVE  = 37
};

// i386 relocations.
// TODO: this is just a subset
enum {
    R_386_NONE          = 0,
    R_386_32            = 1,
    R_386_PC32          = 2,
    R_386_GOT32         = 3,
    R_386_PLT32         = 4,
    R_386_COPY          = 5,
    R_386_GLOB_DAT      = 6,
    R_386_JUMP_SLOT     = 7,
    R_386_RELATIVE      = 8,
    R_386_GOTOFF        = 9,
    R_386_GOTPC         = 10,
    R_386_32PLT         = 11,
    R_386_TLS_TPOFF     = 14,
    R_386_TLS_IE        = 15,
    R_386_TLS_GOTIE     = 16,
    R_386_TLS_LE        = 17,
    R_386_TLS_GD        = 18,
    R_386_TLS_LDM       = 19,
    R_386_16            = 20,
    R_386_PC16          = 21,
    R_386_8             = 22,
    R_386_PC8           = 23,
    R_386_TLS_GD_32     = 24,
    R_386_TLS_GD_PUSH   = 25,
    R_386_TLS_GD_CALL   = 26,
    R_386_TLS_GD_POP    = 27,
    R_386_TLS_LDM_32    = 28,
    R_386_TLS_LDM_PUSH  = 29,
    R_386_TLS_LDM_CALL  = 30,
    R_386_TLS_LDM_POP   = 31,
    R_386_TLS_LDO_32    = 32,
    R_386_TLS_IE_32     = 33,
    R_386_TLS_LE_32     = 34,
    R_386_TLS_DTPMOD32  = 35,
    R_386_TLS_DTPOFF32  = 36,
    R_386_TLS_TPOFF32   = 37,
    R_386_TLS_GOTDESC   = 39,
    R_386_TLS_DESC_CALL = 40,
    R_386_TLS_DESC      = 41,
    R_386_IRELATIVE     = 42,
    R_386_NUM           = 43
};

// ELF Relocation types for PPC32
enum {
    R_PPC_NONE                  = 0,      /* No relocation. */
    R_PPC_ADDR32                = 1,
    R_PPC_ADDR24                = 2,
    R_PPC_ADDR16                = 3,
    R_PPC_ADDR16_LO             = 4,
    R_PPC_ADDR16_HI             = 5,
    R_PPC_ADDR16_HA             = 6,
    R_PPC_ADDR14                = 7,
    R_PPC_ADDR14_BRTAKEN        = 8,
    R_PPC_ADDR14_BRNTAKEN       = 9,
    R_PPC_REL24                 = 10,
    R_PPC_REL14                 = 11,
    R_PPC_REL14_BRTAKEN         = 12,
    R_PPC_REL14_BRNTAKEN        = 13,
    R_PPC_GOT16                 = 14,
    R_PPC_GOT16_LO              = 15,
    R_PPC_GOT16_HI              = 16,
    R_PPC_GOT16_HA              = 17,
    R_PPC_REL32                 = 26,
    R_PPC_TLS                   = 67,
    R_PPC_DTPMOD32              = 68,
    R_PPC_TPREL16               = 69,
    R_PPC_TPREL16_LO            = 70,
    R_PPC_TPREL16_HI            = 71,
    R_PPC_TPREL16_HA            = 72,
    R_PPC_TPREL32               = 73,
    R_PPC_DTPREL16              = 74,
    R_PPC_DTPREL16_LO           = 75,
    R_PPC_DTPREL16_HI           = 76,
    R_PPC_DTPREL16_HA           = 77,
    R_PPC_DTPREL32              = 78,
    R_PPC_GOT_TLSGD16           = 79,
    R_PPC_GOT_TLSGD16_LO        = 80,
    R_PPC_GOT_TLSGD16_HI        = 81,
    R_PPC_GOT_TLSGD16_HA        = 82,
    R_PPC_GOT_TLSLD16           = 83,
    R_PPC_GOT_TLSLD16_LO        = 84,
    R_PPC_GOT_TLSLD16_HI        = 85,
    R_PPC_GOT_TLSLD16_HA        = 86,
    R_PPC_GOT_TPREL16           = 87,
    R_PPC_GOT_TPREL16_LO        = 88,
    R_PPC_GOT_TPREL16_HI        = 89,
    R_PPC_GOT_TPREL16_HA        = 90,
    R_PPC_GOT_DTPREL16          = 91,
    R_PPC_GOT_DTPREL16_LO       = 92,
    R_PPC_GOT_DTPREL16_HI       = 93,
    R_PPC_GOT_DTPREL16_HA       = 94,
    R_PPC_TLSGD                 = 95,
    R_PPC_TLSLD                 = 96,
    R_PPC_REL16                 = 249,
    R_PPC_REL16_LO              = 250,
    R_PPC_REL16_HI              = 251,
    R_PPC_REL16_HA              = 252
};

// ELF Relocation types for PPC64
enum {
    R_PPC64_NONE                = 0,
    R_PPC64_ADDR32              = 1,
    R_PPC64_ADDR24              = 2,
    R_PPC64_ADDR16              = 3,
    R_PPC64_ADDR16_LO           = 4,
    R_PPC64_ADDR16_HI           = 5,
    R_PPC64_ADDR16_HA           = 6,
    R_PPC64_ADDR14              = 7,
    R_PPC64_ADDR14_BRTAKEN      = 8,
    R_PPC64_ADDR14_BRNTAKEN     = 9,
    R_PPC64_REL24               = 10,
    R_PPC64_REL14               = 11,
    R_PPC64_REL14_BRTAKEN       = 12,
    R_PPC64_REL14_BRNTAKEN      = 13,
    R_PPC64_GOT16               = 14,
    R_PPC64_GOT16_LO            = 15,
    R_PPC64_GOT16_HI            = 16,
    R_PPC64_GOT16_HA            = 17,
    R_PPC64_REL32               = 26,
    R_PPC64_ADDR64              = 38,
    R_PPC64_ADDR16_HIGHER       = 39,
    R_PPC64_ADDR16_HIGHERA      = 40,
    R_PPC64_ADDR16_HIGHEST      = 41,
    R_PPC64_ADDR16_HIGHESTA     = 42,
    R_PPC64_REL64               = 44,
    R_PPC64_TOC16               = 47,
    R_PPC64_TOC16_LO            = 48,
    R_PPC64_TOC16_HI            = 49,
    R_PPC64_TOC16_HA            = 50,
    R_PPC64_TOC                 = 51,
    R_PPC64_ADDR16_DS           = 56,
    R_PPC64_ADDR16_LO_DS        = 57,
    R_PPC64_GOT16_DS            = 58,
    R_PPC64_GOT16_LO_DS         = 59,
    R_PPC64_TOC16_DS            = 63,
    R_PPC64_TOC16_LO_DS         = 64,
    R_PPC64_TLS                 = 67,
    R_PPC64_DTPMOD64            = 68,
    R_PPC64_TPREL16             = 69,
    R_PPC64_TPREL16_LO          = 70,
    R_PPC64_TPREL16_HI          = 71,
    R_PPC64_TPREL16_HA          = 72,
    R_PPC64_TPREL64             = 73,
    R_PPC64_DTPREL16            = 74,
    R_PPC64_DTPREL16_LO         = 75,
    R_PPC64_DTPREL16_HI         = 76,
    R_PPC64_DTPREL16_HA         = 77,
    R_PPC64_DTPREL64            = 78,
    R_PPC64_GOT_TLSGD16         = 79,
    R_PPC64_GOT_TLSGD16_LO      = 80,
    R_PPC64_GOT_TLSGD16_HI      = 81,
    R_PPC64_GOT_TLSGD16_HA      = 82,
    R_PPC64_GOT_TLSLD16         = 83,
    R_PPC64_GOT_TLSLD16_LO      = 84,
    R_PPC64_GOT_TLSLD16_HI      = 85,
    R_PPC64_GOT_TLSLD16_HA      = 86,
    R_PPC64_GOT_TPREL16_DS      = 87,
    R_PPC64_GOT_TPREL16_LO_DS   = 88,
    R_PPC64_GOT_TPREL16_HI      = 89,
    R_PPC64_GOT_TPREL16_HA      = 90,
    R_PPC64_GOT_DTPREL16_DS     = 91,
    R_PPC64_GOT_DTPREL16_LO_DS  = 92,
    R_PPC64_GOT_DTPREL16_HI     = 93,
    R_PPC64_GOT_DTPREL16_HA     = 94,
    R_PPC64_TPREL16_DS          = 95,
    R_PPC64_TPREL16_LO_DS       = 96,
    R_PPC64_TPREL16_HIGHER      = 97,
    R_PPC64_TPREL16_HIGHERA     = 98,
    R_PPC64_TPREL16_HIGHEST     = 99,
    R_PPC64_TPREL16_HIGHESTA    = 100,
    R_PPC64_DTPREL16_DS         = 101,
    R_PPC64_DTPREL16_LO_DS      = 102,
    R_PPC64_DTPREL16_HIGHER     = 103,
    R_PPC64_DTPREL16_HIGHERA    = 104,
    R_PPC64_DTPREL16_HIGHEST    = 105,
    R_PPC64_DTPREL16_HIGHESTA   = 106,
    R_PPC64_TLSGD               = 107,
    R_PPC64_TLSLD               = 108,
    R_PPC64_REL16               = 249,
    R_PPC64_REL16_LO            = 250,
    R_PPC64_REL16_HI            = 251,
    R_PPC64_REL16_HA            = 252
};

// ELF Relocation types for AArch64

enum {
    R_AARCH64_NONE                        = 0x100,

    R_AARCH64_ABS64                       = 0x101,
    R_AARCH64_ABS32                       = 0x102,
    R_AARCH64_ABS16                       = 0x103,
    R_AARCH64_PREL64                      = 0x104,
    R_AARCH64_PREL32                      = 0x105,
    R_AARCH64_PREL16                      = 0x106,

    R_AARCH64_MOVW_UABS_G0                = 0x107,
    R_AARCH64_MOVW_UABS_G0_NC             = 0x108,
    R_AARCH64_MOVW_UABS_G1                = 0x109,
    R_AARCH64_MOVW_UABS_G1_NC             = 0x10a,
    R_AARCH64_MOVW_UABS_G2                = 0x10b,
    R_AARCH64_MOVW_UABS_G2_NC             = 0x10c,
    R_AARCH64_MOVW_UABS_G3                = 0x10d,
    R_AARCH64_MOVW_SABS_G0                = 0x10e,
    R_AARCH64_MOVW_SABS_G1                = 0x10f,
    R_AARCH64_MOVW_SABS_G2                = 0x110,

    R_AARCH64_LD_PREL_LO19                = 0x111,
    R_AARCH64_ADR_PREL_LO21               = 0x112,
    R_AARCH64_ADR_PREL_PG_HI21            = 0x113,
    R_AARCH64_ADD_ABS_LO12_NC             = 0x115,
    R_AARCH64_LDST8_ABS_LO12_NC           = 0x116,

    R_AARCH64_TSTBR14                     = 0x117,
    R_AARCH64_CONDBR19                    = 0x118,
    R_AARCH64_JUMP26                      = 0x11a,
    R_AARCH64_CALL26                      = 0x11b,

    R_AARCH64_LDST16_ABS_LO12_NC          = 0x11c,
    R_AARCH64_LDST32_ABS_LO12_NC          = 0x11d,
    R_AARCH64_LDST64_ABS_LO12_NC          = 0x11e,

    R_AARCH64_LDST128_ABS_LO12_NC         = 0x12b,

    R_AARCH64_ADR_GOT_PAGE                = 0x137,
    R_AARCH64_LD64_GOT_LO12_NC            = 0x138,

    R_AARCH64_TLSLD_MOVW_DTPREL_G2        = 0x20b,
    R_AARCH64_TLSLD_MOVW_DTPREL_G1        = 0x20c,
    R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC     = 0x20d,
    R_AARCH64_TLSLD_MOVW_DTPREL_G0        = 0x20e,
    R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC     = 0x20f,
    R_AARCH64_TLSLD_ADD_DTPREL_HI12       = 0x210,
    R_AARCH64_TLSLD_ADD_DTPREL_LO12       = 0x211,
    R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC    = 0x212,
    R_AARCH64_TLSLD_LDST8_DTPREL_LO12     = 0x213,
    R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC  = 0x214,
    R_AARCH64_TLSLD_LDST16_DTPREL_LO12    = 0x215,
    R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC = 0x216,
    R_AARCH64_TLSLD_LDST32_DTPREL_LO12    = 0x217,
    R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC = 0x218,
    R_AARCH64_TLSLD_LDST64_DTPREL_LO12    = 0x219,
    R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC = 0x21a,

    R_AARCH64_TLSIE_MOVW_GOTTPREL_G1      = 0x21b,
    R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC   = 0x21c,
    R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21   = 0x21d,
    R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC = 0x21e,
    R_AARCH64_TLSIE_LD_GOTTPREL_PREL19    = 0x21f,

    R_AARCH64_TLSLE_MOVW_TPREL_G2         = 0x220,
    R_AARCH64_TLSLE_MOVW_TPREL_G1         = 0x221,
    R_AARCH64_TLSLE_MOVW_TPREL_G1_NC      = 0x222,
    R_AARCH64_TLSLE_MOVW_TPREL_G0         = 0x223,
    R_AARCH64_TLSLE_MOVW_TPREL_G0_NC      = 0x224,
    R_AARCH64_TLSLE_ADD_TPREL_HI12        = 0x225,
    R_AARCH64_TLSLE_ADD_TPREL_LO12        = 0x226,
    R_AARCH64_TLSLE_ADD_TPREL_LO12_NC     = 0x227,
    R_AARCH64_TLSLE_LDST8_TPREL_LO12      = 0x228,
    R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC   = 0x229,
    R_AARCH64_TLSLE_LDST16_TPREL_LO12     = 0x22a,
    R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC  = 0x22b,
    R_AARCH64_TLSLE_LDST32_TPREL_LO12     = 0x22c,
    R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC  = 0x22d,
    R_AARCH64_TLSLE_LDST64_TPREL_LO12     = 0x22e,
    R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC  = 0x22f,

    R_AARCH64_TLSDESC_ADR_PAGE            = 0x232,
    R_AARCH64_TLSDESC_LD64_LO12_NC        = 0x233,
    R_AARCH64_TLSDESC_ADD_LO12_NC         = 0x234,

    R_AARCH64_TLSDESC_CALL                = 0x239
};

// ARM Specific e_flags
enum : unsigned {
    EF_ARM_SOFT_FLOAT =     0x00000200U,
    EF_ARM_VFP_FLOAT =      0x00000400U,
    EF_ARM_EABI_UNKNOWN =   0x00000000U,
    EF_ARM_EABI_VER1 =      0x01000000U,
    EF_ARM_EABI_VER2 =      0x02000000U,
    EF_ARM_EABI_VER3 =      0x03000000U,
    EF_ARM_EABI_VER4 =      0x04000000U,
    EF_ARM_EABI_VER5 =      0x05000000U,
    EF_ARM_EABIMASK =       0xFF000000U
};

// ELF Relocation types for ARM
// Meets 2.08 ABI Specs.

enum {
    R_ARM_NONE                  = 0x00,
    R_ARM_PC24                  = 0x01,
    R_ARM_ABS32                 = 0x02,
    R_ARM_REL32                 = 0x03,
    R_ARM_LDR_PC_G0             = 0x04,
    R_ARM_ABS16                 = 0x05,
    R_ARM_ABS12                 = 0x06,
    R_ARM_THM_ABS5              = 0x07,
    R_ARM_ABS8                  = 0x08,
    R_ARM_SBREL32               = 0x09,
    R_ARM_THM_CALL              = 0x0a,
    R_ARM_THM_PC8               = 0x0b,
    R_ARM_BREL_ADJ              = 0x0c,
    R_ARM_TLS_DESC              = 0x0d,
    R_ARM_THM_SWI8              = 0x0e,
    R_ARM_XPC25                 = 0x0f,
    R_ARM_THM_XPC22             = 0x10,
    R_ARM_TLS_DTPMOD32          = 0x11,
    R_ARM_TLS_DTPOFF32          = 0x12,
    R_ARM_TLS_TPOFF32           = 0x13,
    R_ARM_COPY                  = 0x14,
    R_ARM_GLOB_DAT              = 0x15,
    R_ARM_JUMP_SLOT             = 0x16,
    R_ARM_RELATIVE              = 0x17,
    R_ARM_GOTOFF32              = 0x18,
    R_ARM_BASE_PREL             = 0x19,
    R_ARM_GOT_BREL              = 0x1a,
    R_ARM_PLT32                 = 0x1b,
    R_ARM_CALL                  = 0x1c,
    R_ARM_JUMP24                = 0x1d,
    R_ARM_THM_JUMP24            = 0x1e,
    R_ARM_BASE_ABS              = 0x1f,
    R_ARM_ALU_PCREL_7_0         = 0x20,
    R_ARM_ALU_PCREL_15_8        = 0x21,
    R_ARM_ALU_PCREL_23_15       = 0x22,
    R_ARM_LDR_SBREL_11_0_NC     = 0x23,
    R_ARM_ALU_SBREL_19_12_NC    = 0x24,
    R_ARM_ALU_SBREL_27_20_CK    = 0x25,
    R_ARM_TARGET1               = 0x26,
    R_ARM_SBREL31               = 0x27,
    R_ARM_V4BX                  = 0x28,
    R_ARM_TARGET2               = 0x29,
    R_ARM_PREL31                = 0x2a,
    R_ARM_MOVW_ABS_NC           = 0x2b,
    R_ARM_MOVT_ABS              = 0x2c,
    R_ARM_MOVW_PREL_NC          = 0x2d,
    R_ARM_MOVT_PREL             = 0x2e,
    R_ARM_THM_MOVW_ABS_NC       = 0x2f,
    R_ARM_THM_MOVT_ABS          = 0x30,
    R_ARM_THM_MOVW_PREL_NC      = 0x31,
    R_ARM_THM_MOVT_PREL         = 0x32,
    R_ARM_THM_JUMP19            = 0x33,
    R_ARM_THM_JUMP6             = 0x34,
    R_ARM_THM_ALU_PREL_11_0     = 0x35,
    R_ARM_THM_PC12              = 0x36,
    R_ARM_ABS32_NOI             = 0x37,
    R_ARM_REL32_NOI             = 0x38,
    R_ARM_ALU_PC_G0_NC          = 0x39,
    R_ARM_ALU_PC_G0             = 0x3a,
    R_ARM_ALU_PC_G1_NC          = 0x3b,
    R_ARM_ALU_PC_G1             = 0x3c,
    R_ARM_ALU_PC_G2             = 0x3d,
    R_ARM_LDR_PC_G1             = 0x3e,
    R_ARM_LDR_PC_G2             = 0x3f,
    R_ARM_LDRS_PC_G0            = 0x40,
    R_ARM_LDRS_PC_G1            = 0x41,
    R_ARM_LDRS_PC_G2            = 0x42,
    R_ARM_LDC_PC_G0             = 0x43,
    R_ARM_LDC_PC_G1             = 0x44,
    R_ARM_LDC_PC_G2             = 0x45,
    R_ARM_ALU_SB_G0_NC          = 0x46,
    R_ARM_ALU_SB_G0             = 0x47,
    R_ARM_ALU_SB_G1_NC          = 0x48,
    R_ARM_ALU_SB_G1             = 0x49,
    R_ARM_ALU_SB_G2             = 0x4a,
    R_ARM_LDR_SB_G0             = 0x4b,
    R_ARM_LDR_SB_G1             = 0x4c,
    R_ARM_LDR_SB_G2             = 0x4d,
    R_ARM_LDRS_SB_G0            = 0x4e,
    R_ARM_LDRS_SB_G1            = 0x4f,
    R_ARM_LDRS_SB_G2            = 0x50,
    R_ARM_LDC_SB_G0             = 0x51,
    R_ARM_LDC_SB_G1             = 0x52,
    R_ARM_LDC_SB_G2             = 0x53,
    R_ARM_MOVW_BREL_NC          = 0x54,
    R_ARM_MOVT_BREL             = 0x55,
    R_ARM_MOVW_BREL             = 0x56,
    R_ARM_THM_MOVW_BREL_NC      = 0x57,
    R_ARM_THM_MOVT_BREL         = 0x58,
    R_ARM_THM_MOVW_BREL         = 0x59,
    R_ARM_TLS_GOTDESC           = 0x5a,
    R_ARM_TLS_CALL              = 0x5b,
    R_ARM_TLS_DESCSEQ           = 0x5c,
    R_ARM_THM_TLS_CALL          = 0x5d,
    R_ARM_PLT32_ABS             = 0x5e,
    R_ARM_GOT_ABS               = 0x5f,
    R_ARM_GOT_PREL              = 0x60,
    R_ARM_GOT_BREL12            = 0x61,
    R_ARM_GOTOFF12              = 0x62,
    R_ARM_GOTRELAX              = 0x63,
    R_ARM_GNU_VTENTRY           = 0x64,
    R_ARM_GNU_VTINHERIT         = 0x65,
    R_ARM_THM_JUMP11            = 0x66,
    R_ARM_THM_JUMP8             = 0x67,
    R_ARM_TLS_GD32              = 0x68,
    R_ARM_TLS_LDM32             = 0x69,
    R_ARM_TLS_LDO32             = 0x6a,
    R_ARM_TLS_IE32              = 0x6b,
    R_ARM_TLS_LE32              = 0x6c,
    R_ARM_TLS_LDO12             = 0x6d,
    R_ARM_TLS_LE12              = 0x6e,
    R_ARM_TLS_IE12GP            = 0x6f,
    R_ARM_PRIVATE_0             = 0x70,
    R_ARM_PRIVATE_1             = 0x71,
    R_ARM_PRIVATE_2             = 0x72,
    R_ARM_PRIVATE_3             = 0x73,
    R_ARM_PRIVATE_4             = 0x74,
    R_ARM_PRIVATE_5             = 0x75,
    R_ARM_PRIVATE_6             = 0x76,
    R_ARM_PRIVATE_7             = 0x77,
    R_ARM_PRIVATE_8             = 0x78,
    R_ARM_PRIVATE_9             = 0x79,
    R_ARM_PRIVATE_10            = 0x7a,
    R_ARM_PRIVATE_11            = 0x7b,
    R_ARM_PRIVATE_12            = 0x7c,
    R_ARM_PRIVATE_13            = 0x7d,
    R_ARM_PRIVATE_14            = 0x7e,
    R_ARM_PRIVATE_15            = 0x7f,
    R_ARM_ME_TOO                = 0x80,
    R_ARM_THM_TLS_DESCSEQ16     = 0x81,
    R_ARM_THM_TLS_DESCSEQ32     = 0x82
};

// Mips Specific e_flags
enum : unsigned {
    EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
    EF_MIPS_PIC       = 0x00000002, // Position independent code
    EF_MIPS_CPIC      = 0x00000004, // Call object with Position independent code
    EF_MIPS_ABI2      = 0x00000020,
    EF_MIPS_32BITMODE = 0x00000100,
    EF_MIPS_NAN2008   = 0x00000400, // Uses IEE 754-2008 NaN encoding
    EF_MIPS_ABI_O32   = 0x00001000, // This file follows the first MIPS 32 bit ABI

    //ARCH_ASE
    EF_MIPS_MICROMIPS = 0x02000000, // microMIPS
    EF_MIPS_ARCH_ASE_M16 =
    0x04000000, // Has Mips-16 ISA extensions
    //ARCH
    EF_MIPS_ARCH_1    = 0x00000000, // MIPS1 instruction set
    EF_MIPS_ARCH_2    = 0x10000000, // MIPS2 instruction set
    EF_MIPS_ARCH_3    = 0x20000000, // MIPS3 instruction set
    EF_MIPS_ARCH_4    = 0x30000000, // MIPS4 instruction set
    EF_MIPS_ARCH_5    = 0x40000000, // MIPS5 instruction set
    EF_MIPS_ARCH_32   = 0x50000000, // MIPS32 instruction set per linux not elf.h
    EF_MIPS_ARCH_64   = 0x60000000, // MIPS64 instruction set per linux not elf.h
    EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2
    EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2
    EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6
    EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6
    EF_MIPS_ARCH      = 0xf0000000  // Mask for applying EF_MIPS_ARCH_ variant
};

// ELF Relocation types for Mips
enum {
    R_MIPS_NONE              =  0,
    R_MIPS_16                =  1,
    R_MIPS_32                =  2,
    R_MIPS_REL32             =  3,
    R_MIPS_26                =  4,
    R_MIPS_HI16              =  5,
    R_MIPS_LO16              =  6,
    R_MIPS_GPREL16           =  7,
    R_MIPS_LITERAL           =  8,
    R_MIPS_GOT16             =  9,
    R_MIPS_PC16              = 10,
    R_MIPS_CALL16            = 11,
    R_MIPS_GPREL32           = 12,
    R_MIPS_UNUSED1           = 13,
    R_MIPS_UNUSED2           = 14,
    R_MIPS_SHIFT5            = 16,
    R_MIPS_SHIFT6            = 17,
    R_MIPS_64                = 18,
    R_MIPS_GOT_DISP          = 19,
    R_MIPS_GOT_PAGE          = 20,
    R_MIPS_GOT_OFST          = 21,
    R_MIPS_GOT_HI16          = 22,
    R_MIPS_GOT_LO16          = 23,
    R_MIPS_SUB               = 24,
    R_MIPS_INSERT_A          = 25,
    R_MIPS_INSERT_B          = 26,
    R_MIPS_DELETE            = 27,
    R_MIPS_HIGHER            = 28,
    R_MIPS_HIGHEST           = 29,
    R_MIPS_CALL_HI16         = 30,
    R_MIPS_CALL_LO16         = 31,
    R_MIPS_SCN_DISP          = 32,
    R_MIPS_REL16             = 33,
    R_MIPS_ADD_IMMEDIATE     = 34,
    R_MIPS_PJUMP             = 35,
    R_MIPS_RELGOT            = 36,
    R_MIPS_JALR              = 37,
    R_MIPS_TLS_DTPMOD32      = 38,
    R_MIPS_TLS_DTPREL32      = 39,
    R_MIPS_TLS_DTPMOD64      = 40,
    R_MIPS_TLS_DTPREL64      = 41,
    R_MIPS_TLS_GD            = 42,
    R_MIPS_TLS_LDM           = 43,
    R_MIPS_TLS_DTPREL_HI16   = 44,
    R_MIPS_TLS_DTPREL_LO16   = 45,
    R_MIPS_TLS_GOTTPREL      = 46,
    R_MIPS_TLS_TPREL32       = 47,
    R_MIPS_TLS_TPREL64       = 48,
    R_MIPS_TLS_TPREL_HI16    = 49,
    R_MIPS_TLS_TPREL_LO16    = 50,
    R_MIPS_GLOB_DAT          = 51,
    R_MIPS_PC21_S2           = 60,
    R_MIPS_PC26_S2           = 61,
    R_MIPS_PC18_S3           = 62,
    R_MIPS_PC19_S2           = 63,
    R_MIPS_PCHI16            = 64,
    R_MIPS_PCLO16            = 65,
    R_MIPS16_GOT16           = 102,
    R_MIPS16_HI16            = 104,
    R_MIPS16_LO16            = 105,
    R_MIPS_COPY              = 126,
    R_MIPS_JUMP_SLOT         = 127,
    R_MICROMIPS_26_S1        = 133,
    R_MICROMIPS_HI16         = 134,
    R_MICROMIPS_LO16         = 135,
    R_MICROMIPS_GOT16        = 138,
    R_MICROMIPS_PC16_S1      = 141,
    R_MICROMIPS_CALL16       = 142,
    R_MICROMIPS_GOT_DISP     = 145,
    R_MICROMIPS_GOT_PAGE     = 146,
    R_MICROMIPS_GOT_OFST     = 147,
    R_MICROMIPS_TLS_GD          = 162,
    R_MICROMIPS_TLS_LDM         = 163,
    R_MICROMIPS_TLS_DTPREL_HI16 = 164,
    R_MICROMIPS_TLS_DTPREL_LO16 = 165,
    R_MICROMIPS_TLS_TPREL_HI16  = 169,
    R_MICROMIPS_TLS_TPREL_LO16  = 170,
    R_MIPS_NUM               = 218,
    R_MIPS_PC32              = 248
};

// Special values for the st_other field in the symbol table entry for MIPS.
enum {
    STO_MIPS_OPTIONAL        = 0x04,  // Symbol whose definition is optional
    STO_MIPS_PLT             = 0x08,  // PLT entry related dynamic table record
    STO_MIPS_PIC             = 0x20,  // PIC func in an object mixes PIC/non-PIC
    STO_MIPS_MICROMIPS       = 0x80,  // MIPS Specific ISA for MicroMips
    STO_MIPS_MIPS16          = 0xf0   // MIPS Specific ISA for Mips16
};

// Hexagon Specific e_flags
// Release 5 ABI
enum {
    // Object processor version flags, bits[3:0]
    EF_HEXAGON_MACH_V2      = 0x00000001,   // Hexagon V2
    EF_HEXAGON_MACH_V3      = 0x00000002,   // Hexagon V3
    EF_HEXAGON_MACH_V4      = 0x00000003,   // Hexagon V4
    EF_HEXAGON_MACH_V5      = 0x00000004,   // Hexagon V5

    // Highest ISA version flags
    EF_HEXAGON_ISA_MACH     = 0x00000000,   // Same as specified in bits[3:0]
    // of e_flags
    EF_HEXAGON_ISA_V2       = 0x00000010,   // Hexagon V2 ISA
    EF_HEXAGON_ISA_V3       = 0x00000020,   // Hexagon V3 ISA
    EF_HEXAGON_ISA_V4       = 0x00000030,   // Hexagon V4 ISA
    EF_HEXAGON_ISA_V5       = 0x00000040    // Hexagon V5 ISA
};

// Hexagon specific Section indexes for common small data
// Release 5 ABI
enum {
    SHN_HEXAGON_SCOMMON     = 0xff00,       // Other access sizes
    SHN_HEXAGON_SCOMMON_1   = 0xff01,       // Byte-sized access
    SHN_HEXAGON_SCOMMON_2   = 0xff02,       // Half-word-sized access
    SHN_HEXAGON_SCOMMON_4   = 0xff03,       // Word-sized access
    SHN_HEXAGON_SCOMMON_8   = 0xff04        // Double-word-size access
};

// ELF Relocation types for Hexagon
// Release 5 ABI
enum {
    R_HEX_NONE              =  0,
    R_HEX_B22_PCREL         =  1,
    R_HEX_B15_PCREL         =  2,
    R_HEX_B7_PCREL          =  3,
    R_HEX_LO16              =  4,
    R_HEX_HI16              =  5,
    R_HEX_32                =  6,
    R_HEX_16                =  7,
    R_HEX_8                 =  8,
    R_HEX_GPREL16_0         =  9,
    R_HEX_GPREL16_1         =  10,
    R_HEX_GPREL16_2         =  11,
    R_HEX_GPREL16_3         =  12,
    R_HEX_HL16              =  13,
    R_HEX_B13_PCREL         =  14,
    R_HEX_B9_PCREL          =  15,
    R_HEX_B32_PCREL_X       =  16,
    R_HEX_32_6_X            =  17,
    R_HEX_B22_PCREL_X       =  18,
    R_HEX_B15_PCREL_X       =  19,
    R_HEX_B13_PCREL_X       =  20,
    R_HEX_B9_PCREL_X        =  21,
    R_HEX_B7_PCREL_X        =  22,
    R_HEX_16_X              =  23,
    R_HEX_12_X              =  24,
    R_HEX_11_X              =  25,
    R_HEX_10_X              =  26,
    R_HEX_9_X               =  27,
    R_HEX_8_X               =  28,
    R_HEX_7_X               =  29,
    R_HEX_6_X               =  30,
    R_HEX_32_PCREL          =  31,
    R_HEX_COPY              =  32,
    R_HEX_GLOB_DAT          =  33,
    R_HEX_JMP_SLOT          =  34,
    R_HEX_RELATIVE          =  35,
    R_HEX_PLT_B22_PCREL     =  36,
    R_HEX_GOTREL_LO16       =  37,
    R_HEX_GOTREL_HI16       =  38,
    R_HEX_GOTREL_32         =  39,
    R_HEX_GOT_LO16          =  40,
    R_HEX_GOT_HI16          =  41,
    R_HEX_GOT_32            =  42,
    R_HEX_GOT_16            =  43,
    R_HEX_DTPMOD_32         =  44,
    R_HEX_DTPREL_LO16       =  45,
    R_HEX_DTPREL_HI16       =  46,
    R_HEX_DTPREL_32         =  47,
    R_HEX_DTPREL_16         =  48,
    R_HEX_GD_PLT_B22_PCREL  =  49,
    R_HEX_GD_GOT_LO16       =  50,
    R_HEX_GD_GOT_HI16       =  51,
    R_HEX_GD_GOT_32         =  52,
    R_HEX_GD_GOT_16         =  53,
    R_HEX_IE_LO16           =  54,
    R_HEX_IE_HI16           =  55,
    R_HEX_IE_32             =  56,
    R_HEX_IE_GOT_LO16       =  57,
    R_HEX_IE_GOT_HI16       =  58,
    R_HEX_IE_GOT_32         =  59,
    R_HEX_IE_GOT_16         =  60,
    R_HEX_TPREL_LO16        =  61,
    R_HEX_TPREL_HI16        =  62,
    R_HEX_TPREL_32          =  63,
    R_HEX_TPREL_16          =  64,
    R_HEX_6_PCREL_X         =  65,
    R_HEX_GOTREL_32_6_X     =  66,
    R_HEX_GOTREL_16_X       =  67,
    R_HEX_GOTREL_11_X       =  68,
    R_HEX_GOT_32_6_X        =  69,
    R_HEX_GOT_16_X          =  70,
    R_HEX_GOT_11_X          =  71,
    R_HEX_DTPREL_32_6_X     =  72,
    R_HEX_DTPREL_16_X       =  73,
    R_HEX_DTPREL_11_X       =  74,
    R_HEX_GD_GOT_32_6_X     =  75,
    R_HEX_GD_GOT_16_X       =  76,
    R_HEX_GD_GOT_11_X       =  77,
    R_HEX_IE_32_6_X         =  78,
    R_HEX_IE_16_X           =  79,
    R_HEX_IE_GOT_32_6_X     =  80,
    R_HEX_IE_GOT_16_X       =  81,
    R_HEX_IE_GOT_11_X       =  82,
    R_HEX_TPREL_32_6_X      =  83,
    R_HEX_TPREL_16_X        =  84,
    R_HEX_TPREL_11_X        =  85
};

// ELF Relocation types for S390/zSeries
enum {
    R_390_NONE        =  0,
    R_390_8           =  1,
    R_390_12          =  2,
    R_390_16          =  3,
    R_390_32          =  4,
    R_390_PC32        =  5,
    R_390_GOT12       =  6,
    R_390_GOT32       =  7,
    R_390_PLT32       =  8,
    R_390_COPY        =  9,
    R_390_GLOB_DAT    = 10,
    R_390_JMP_SLOT    = 11,
    R_390_RELATIVE    = 12,
    R_390_GOTOFF      = 13,
    R_390_GOTPC       = 14,
    R_390_GOT16       = 15,
    R_390_PC16        = 16,
    R_390_PC16DBL     = 17,
    R_390_PLT16DBL    = 18,
    R_390_PC32DBL     = 19,
    R_390_PLT32DBL    = 20,
    R_390_GOTPCDBL    = 21,
    R_390_64          = 22,
    R_390_PC64        = 23,
    R_390_GOT64       = 24,
    R_390_PLT64       = 25,
    R_390_GOTENT      = 26,
    R_390_GOTOFF16    = 27,
    R_390_GOTOFF64    = 28,
    R_390_GOTPLT12    = 29,
    R_390_GOTPLT16    = 30,
    R_390_GOTPLT32    = 31,
    R_390_GOTPLT64    = 32,
    R_390_GOTPLTENT   = 33,
    R_390_PLTOFF16    = 34,
    R_390_PLTOFF32    = 35,
    R_390_PLTOFF64    = 36,
    R_390_TLS_LOAD    = 37,
    R_390_TLS_GDCALL  = 38,
    R_390_TLS_LDCALL  = 39,
    R_390_TLS_GD32    = 40,
    R_390_TLS_GD64    = 41,
    R_390_TLS_GOTIE12 = 42,
    R_390_TLS_GOTIE32 = 43,
    R_390_TLS_GOTIE64 = 44,
    R_390_TLS_LDM32   = 45,
    R_390_TLS_LDM64   = 46,
    R_390_TLS_IE32    = 47,
    R_390_TLS_IE64    = 48,
    R_390_TLS_IEENT   = 49,
    R_390_TLS_LE32    = 50,
    R_390_TLS_LE64    = 51,
    R_390_TLS_LDO32   = 52,
    R_390_TLS_LDO64   = 53,
    R_390_TLS_DTPMOD  = 54,
    R_390_TLS_DTPOFF  = 55,
    R_390_TLS_TPOFF   = 56,
    R_390_20          = 57,
    R_390_GOT20       = 58,
    R_390_GOTPLT20    = 59,
    R_390_TLS_GOTIE20 = 60,
    R_390_IRELATIVE   = 61
};

// ELF Relocation type for Sparc.
enum {
    R_SPARC_NONE        = 0,
    R_SPARC_8           = 1,
    R_SPARC_16          = 2,
    R_SPARC_32          = 3,
    R_SPARC_DISP8       = 4,
    R_SPARC_DISP16      = 5,
    R_SPARC_DISP32      = 6,
    R_SPARC_WDISP30     = 7,
    R_SPARC_WDISP22     = 8,
    R_SPARC_HI22        = 9,
    R_SPARC_22          = 10,
    R_SPARC_13          = 11,
    R_SPARC_LO10        = 12,
    R_SPARC_GOT10       = 13,
    R_SPARC_GOT13       = 14,
    R_SPARC_GOT22       = 15,
    R_SPARC_PC10        = 16,
    R_SPARC_PC22        = 17,
    R_SPARC_WPLT30      = 18,
    R_SPARC_COPY        = 19,
    R_SPARC_GLOB_DAT    = 20,
    R_SPARC_JMP_SLOT    = 21,
    R_SPARC_RELATIVE    = 22,
    R_SPARC_UA32        = 23,
    R_SPARC_PLT32       = 24,
    R_SPARC_HIPLT22     = 25,
    R_SPARC_LOPLT10     = 26,
    R_SPARC_PCPLT32     = 27,
    R_SPARC_PCPLT22     = 28,
    R_SPARC_PCPLT10     = 29,
    R_SPARC_10          = 30,
    R_SPARC_11          = 31,
    R_SPARC_64          = 32,
    R_SPARC_OLO10       = 33,
    R_SPARC_HH22        = 34,
    R_SPARC_HM10        = 35,
    R_SPARC_LM22        = 36,
    R_SPARC_PC_HH22     = 37,
    R_SPARC_PC_HM10     = 38,
    R_SPARC_PC_LM22     = 39,
    R_SPARC_WDISP16     = 40,
    R_SPARC_WDISP19     = 41,
    R_SPARC_7           = 43,
    R_SPARC_5           = 44,
    R_SPARC_6           = 45,
    R_SPARC_DISP64      = 46,
    R_SPARC_PLT64       = 47,
    R_SPARC_HIX22       = 48,
    R_SPARC_LOX10       = 49,
    R_SPARC_H44         = 50,
    R_SPARC_M44         = 51,
    R_SPARC_L44         = 52,
    R_SPARC_REGISTER    = 53,
    R_SPARC_UA64        = 54,
    R_SPARC_UA16        = 55,
    R_SPARC_TLS_GD_HI22   = 56,
    R_SPARC_TLS_GD_LO10   = 57,
    R_SPARC_TLS_GD_ADD    = 58,
    R_SPARC_TLS_GD_CALL   = 59,
    R_SPARC_TLS_LDM_HI22  = 60,
    R_SPARC_TLS_LDM_LO10  = 61,
    R_SPARC_TLS_LDM_ADD   = 62,
    R_SPARC_TLS_LDM_CALL  = 63,
    R_SPARC_TLS_LDO_HIX22 = 64,
    R_SPARC_TLS_LDO_LOX10 = 65,
    R_SPARC_TLS_LDO_ADD   = 66,
    R_SPARC_TLS_IE_HI22   = 67,
    R_SPARC_TLS_IE_LO10   = 68,
    R_SPARC_TLS_IE_LD     = 69,
    R_SPARC_TLS_IE_LDX    = 70,
    R_SPARC_TLS_IE_ADD    = 71,
    R_SPARC_TLS_LE_HIX22  = 72,
    R_SPARC_TLS_LE_LOX10  = 73,
    R_SPARC_TLS_DTPMOD32  = 74,
    R_SPARC_TLS_DTPMOD64  = 75,
    R_SPARC_TLS_DTPOFF32  = 76,
    R_SPARC_TLS_DTPOFF64  = 77,
    R_SPARC_TLS_TPOFF32   = 78,
    R_SPARC_TLS_TPOFF64   = 79,
    R_SPARC_GOTDATA_HIX22 = 80,
    R_SPARC_GOTDATA_LOX22 = 81,
    R_SPARC_GOTDATA_OP_HIX22 = 82,
    R_SPARC_GOTDATA_OP_LOX22 = 83,
    R_SPARC_GOTDATA_OP    = 84
};

// Section header.
struct Elf32_Shdr {
    Elf32_Word sh_name;      // Section name (index into string table)
    Elf32_Word sh_type;      // Section type (SHT_*)
    Elf32_Word sh_flags;     // Section flags (SHF_*)
    Elf32_Addr sh_addr;      // Address where section is to be loaded
    Elf32_Off  sh_offset;    // File offset of section data, in bytes
    Elf32_Word sh_size;      // Size of section, in bytes
    Elf32_Word sh_link;      // Section type-specific header table index link
    Elf32_Word sh_info;      // Section type-specific extra information
    Elf32_Word sh_addralign; // Section address alignment
    Elf32_Word sh_entsize;   // Size of records contained within the section  每个表项的长度字节数
};

// Section header for ELF64 - same fields as ELF32, different types.
struct Elf64_Shdr {
    Elf64_Word  sh_name;
    Elf64_Word  sh_type;
    Elf64_Xword sh_flags;
    Elf64_Addr  sh_addr;
    Elf64_Off   sh_offset;
    Elf64_Xword sh_size;
    Elf64_Word  sh_link;
    Elf64_Word  sh_info;
    Elf64_Xword sh_addralign;
    Elf64_Xword sh_entsize;
};

// Special section indices.
enum {
    SHN_UNDEF     = 0,      // Undefined, missing, irrelevant, or meaningless
    SHN_LORESERVE = 0xff00, // Lowest reserved index
    SHN_LOPROC    = 0xff00, // Lowest processor-specific index
    SHN_HIPROC    = 0xff1f, // Highest processor-specific index
    SHN_LOOS      = 0xff20, // Lowest operating system-specific index
    SHN_HIOS      = 0xff3f, // Highest operating system-specific index
    SHN_ABS       = 0xfff1, // Symbol has absolute value; does not need relocation
    SHN_COMMON    = 0xfff2, // FORTRAN COMMON or C external global variables
    SHN_XINDEX    = 0xffff, // Mark that the index is >= SHN_LORESERVE
    SHN_HIRESERVE = 0xffff  // Highest reserved index
};

// Section types.
enum : unsigned {
    SHT_NULL          = 0,  // No associated section (inactive entry).
    SHT_PROGBITS      = 1,  // Program-defined contents.
    SHT_SYMTAB        = 2,  // Symbol table.
    SHT_STRTAB        = 3,  // String table.
    SHT_RELA          = 4,  // Relocation entries; explicit addends.
    SHT_HASH          = 5,  // Symbol hash table.
    SHT_DYNAMIC       = 6,  // Information for dynamic linking.
    SHT_NOTE          = 7,  // Information about the file.
    SHT_NOBITS        = 8,  // Data occupies no space in the file.
    SHT_REL           = 9,  // Relocation entries; no explicit addends.
    SHT_SHLIB         = 10, // Reserved.
    SHT_DYNSYM        = 11, // Symbol table.
    SHT_INIT_ARRAY    = 14, // Pointers to initialization functions.
    SHT_FINI_ARRAY    = 15, // Pointers to termination functions.
    SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
    SHT_GROUP         = 17, // Section group.
    SHT_SYMTAB_SHNDX  = 18, // Indices for SHN_XINDEX entries.
    SHT_LOOS          = 0x60000000, // Lowest operating system-specific type.
    SHT_GNU_ATTRIBUTES= 0x6ffffff5, // Object attributes.
    SHT_GNU_HASH      = 0x6ffffff6, // GNU-style hash table.
    SHT_GNU_verdef    = 0x6ffffffd, // GNU version definitions.
    SHT_GNU_verneed   = 0x6ffffffe, // GNU version references.
    SHT_GNU_versym    = 0x6fffffff, // GNU symbol versions table.
    SHT_HIOS          = 0x6fffffff, // Highest operating system-specific type.
    SHT_LOPROC        = 0x70000000, // Lowest processor arch-specific type.
    // Fixme: All this is duplicated in MCSectionELF. Why??
    // Exception Index table
    SHT_ARM_EXIDX           = 0x70000001U,
    // BPABI DLL dynamic linking pre-emption map
    SHT_ARM_PREEMPTMAP      = 0x70000002U,
    //  Object file compatibility attributes
    SHT_ARM_ATTRIBUTES      = 0x70000003U,
    SHT_ARM_DEBUGOVERLAY    = 0x70000004U,
    SHT_ARM_OVERLAYSECTION  = 0x70000005U,
    SHT_HEX_ORDERED         = 0x70000000, // Link editor is to sort the entries in
    // this section based on their sizes
    SHT_X86_64_UNWIND       = 0x70000001, // Unwind information

    SHT_MIPS_REGINFO        = 0x70000006, // Register usage information
    SHT_MIPS_OPTIONS        = 0x7000000d, // General options
    SHT_MIPS_ABIFLAGS       = 0x7000002a, // Abiflags options

    SHT_HIPROC        = 0x7fffffff, // Highest processor arch-specific type.
    SHT_LOUSER        = 0x80000000, // Lowest type reserved for applications.
    SHT_HIUSER        = 0xffffffff  // Highest type reserved for applications.
};

// Section flags.
enum : unsigned {
    // Section data should be writable during execution.
    SHF_WRITE = 0x1,

    // Section occupies memory during program execution.
    SHF_ALLOC = 0x2,

    // Section contains executable machine instructions.
    SHF_EXECINSTR = 0x4,

    // The data in this section may be merged.
    SHF_MERGE = 0x10,

    // The data in this section is null-terminated strings.
    SHF_STRINGS = 0x20,

    // A field in this section holds a section header table index.
    SHF_INFO_LINK = 0x40U,

    // Adds special ordering requirements for link editors.
    SHF_LINK_ORDER = 0x80U,

    // This section requires special OS-specific processing to avoid incorrect
    // behavior.
    SHF_OS_NONCONFORMING = 0x100U,

    // This section is a member of a section group.
    SHF_GROUP = 0x200U,

    // This section holds Thread-Local Storage.
    SHF_TLS = 0x400U,

    // This section is excluded from the final executable or shared library.
    SHF_EXCLUDE = 0x80000000U,

    // Start of target-specific flags.

    /// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped
    /// together by the linker to form the constant pool and the cp register is
    /// set to the start of the constant pool by the boot code.
    XCORE_SHF_CP_SECTION = 0x800U,

    /// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped
    /// together by the linker to form the data section and the dp register is
    /// set to the start of the section by the boot code.
    XCORE_SHF_DP_SECTION = 0x1000U,

    SHF_MASKOS   = 0x0ff00000,

    // Bits indicating processor-specific flags.
    SHF_MASKPROC = 0xf0000000,

    // If an object file section does not have this flag set, then it may not hold
    // more than 2GB and can be freely referred to in objects using smaller code
    // models. Otherwise, only objects using larger code models can refer to them.
    // For example, a medium code model object can refer to data in a section that
    // sets this flag besides being able to refer to data in a section that does
    // not set it; likewise, a small code model object can refer only to code in a
    // section that does not set this flag.
    SHF_X86_64_LARGE = 0x10000000,

    // All sections with the GPREL flag are grouped into a global data area
    // for faster accesses
    SHF_HEX_GPREL = 0x10000000,

    // Section contains text/data which may be replicated in other sections.
    // Linker must retain only one copy.
    SHF_MIPS_NODUPES = 0x01000000,

    // Linker must generate implicit hidden weak names.
    SHF_MIPS_NAMES   = 0x02000000,

    // Section data local to process.
    SHF_MIPS_LOCAL   = 0x04000000,

    // Do not strip this section.
    SHF_MIPS_NOSTRIP = 0x08000000,

    // Section must be part of global data area.
    SHF_MIPS_GPREL   = 0x10000000,

    // This section should be merged.
    SHF_MIPS_MERGE   = 0x20000000,

    // Address size to be inferred from section entry size.
    SHF_MIPS_ADDR    = 0x40000000,

    // Section data is string data by default.
    SHF_MIPS_STRING  = 0x80000000
};

// Section Group Flags
enum : unsigned {
    GRP_COMDAT = 0x1,
    GRP_MASKOS = 0x0ff00000,
    GRP_MASKPROC = 0xf0000000
};

// Symbol table entries for ELF32.
struct Elf32_Sym {
    Elf32_Word    st_name;  // Symbol name (index into string table)
    Elf32_Addr    st_value; // Value or address associated with the symbol
    Elf32_Word    st_size;  // Size of the symbol
    unsigned char st_info;  // Symbol's type and binding attributes
    unsigned char st_other; // Must be zero; reserved
    Elf32_Half    st_shndx; // Which section (header table index) it's defined in

    // These accessors and mutators correspond to the ELF32_ST_BIND,
    // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
    unsigned char getBinding() const { return st_info >> 4; }
    unsigned char getType() const { return st_info & 0x0f; }
    void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
    void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
    void setBindingAndType(unsigned char b, unsigned char t) {
        st_info = (b << 4) + (t & 0x0f);
    }
};

// BEGIN android-added for  compat
static inline unsigned char ELF32_ST_BIND(unsigned char st_info) { return st_info >> 4; }
static inline unsigned char ELF32_ST_TYPE(unsigned char st_info) { return st_info & 0x0f; }
static inline unsigned char ELF64_ST_BIND(unsigned char st_info) { return st_info >> 4; }
static inline unsigned char ELF64_ST_TYPE(unsigned char st_info) { return st_info & 0x0f; }
// END android-added for  compat

// Symbol table entries for ELF64.
struct Elf64_Sym {
    Elf64_Word      st_name;  // Symbol name (index into string table)
    unsigned char   st_info;  // Symbol's type and binding attributes
    unsigned char   st_other; // Must be zero; reserved
    Elf64_Half      st_shndx; // Which section (header tbl index) it's defined in
    Elf64_Addr      st_value; // Value or address associated with the symbol
    Elf64_Xword     st_size;  // Size of the symbol

    // These accessors and mutators are identical to those defined for ELF32
    // symbol table entries.
    unsigned char getBinding() const { return st_info >> 4; }
    unsigned char getType() const { return st_info & 0x0f; }
    void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
    void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
    void setBindingAndType(unsigned char b, unsigned char t) {
        st_info = (b << 4) + (t & 0x0f);
    }
};

// The size (in bytes) of symbol table entries.
enum {
    SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
    SYMENTRY_SIZE64 = 24  // 64-bit symbol entry size.
};

// Symbol bindings.
enum {
    STB_LOCAL = 0,   // Local symbol, not visible outside obj file containing def
    STB_GLOBAL = 1,  // Global symbol, visible to all object files being combined
    STB_WEAK = 2,    // Weak symbol, like global but lower-precedence
    STB_LOOS   = 10, // Lowest operating system-specific binding type
    STB_HIOS   = 12, // Highest operating system-specific binding type
    STB_LOPROC = 13, // Lowest processor-specific binding type
    STB_HIPROC = 15  // Highest processor-specific binding type
};

// Symbol types.
enum {
    STT_NOTYPE  = 0,   // Symbol's type is not specified
    STT_OBJECT  = 1,   // Symbol is a data object (variable, array, etc.)
    STT_FUNC    = 2,   // Symbol is executable code (function, etc.)
    STT_SECTION = 3,   // Symbol refers to a section
    STT_FILE    = 4,   // Local, absolute symbol that refers to a file
    STT_COMMON  = 5,   // An uninitialized common block
    STT_TLS     = 6,   // Thread local data object
    STT_LOOS    = 7,   // Lowest operating system-specific symbol type
    STT_HIOS    = 8,   // Highest operating system-specific symbol type
    STT_GNU_IFUNC = 10, // GNU indirect function
    STT_LOPROC  = 13,  // Lowest processor-specific symbol type
    STT_HIPROC  = 15   // Highest processor-specific symbol type
};

enum {
    STV_DEFAULT   = 0,  // Visibility is specified by binding type
    STV_INTERNAL  = 1,  // Defined by processor supplements
    STV_HIDDEN    = 2,  // Not visible to other components
    STV_PROTECTED = 3   // Visible in other components but not preemptable
};

// Symbol number.
enum {
    STN_UNDEF = 0
};

// Relocation entry, without explicit addend.
struct Elf32_Rel {
    Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
    Elf32_Word r_info;   // Symbol table index and type of relocation to apply

    // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
    // and ELF32_R_INFO macros defined in the ELF specification:
    Elf32_Word getSymbol() const { return (r_info >> 8); }
    unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
    void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
    void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
    void setSymbolAndType(Elf32_Word s, unsigned char t) {
        r_info = (s << 8) + t;
    }
};

// Relocation entry with explicit addend.
struct Elf32_Rela {
    Elf32_Addr  r_offset; // Location (file byte offset, or program virtual addr)
    Elf32_Word  r_info;   // Symbol table index and type of relocation to apply
    Elf32_Sword r_addend; // Compute value for relocatable field by adding this

    // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
    // and ELF32_R_INFO macros defined in the ELF specification:
    Elf32_Word getSymbol() const { return (r_info >> 8); }
    unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
    void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
    void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
    void setSymbolAndType(Elf32_Word s, unsigned char t) {
        r_info = (s << 8) + t;
    }
};

// Relocation entry, without explicit addend.
struct Elf64_Rel {
    Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
    Elf64_Xword r_info;   // Symbol table index and type of relocation to apply.

    // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
    // and ELF64_R_INFO macros defined in the ELF specification:
    Elf64_Word getSymbol() const { return (r_info >> 32); }
    Elf64_Word getType() const {
        return (Elf64_Word) (r_info & 0xffffffffL);
    }
    void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
    void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
    void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
        r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
    }
};

// Relocation entry with explicit addend.
struct Elf64_Rela {
    Elf64_Addr  r_offset; // Location (file byte offset, or program virtual addr).
    Elf64_Xword  r_info;   // Symbol table index and type of relocation to apply.
    Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.

    // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
    // and ELF64_R_INFO macros defined in the ELF specification:
    Elf64_Word getSymbol() const { return (r_info >> 32); }
    Elf64_Word getType() const {
        return (Elf64_Word) (r_info & 0xffffffffL);
    }
    void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
    void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
    void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
        r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
    }
};

// Program header for ELF32.
struct Elf32_Phdr {
    Elf32_Word p_type;   // Type of segment
    Elf32_Off  p_offset; // File offset where segment is located, in bytes
    Elf32_Addr p_vaddr;  // Virtual address of beginning of segment
    Elf32_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
    Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
    Elf32_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    Elf32_Word p_flags;  // Segment flags
    Elf32_Word p_align;  // Segment alignment constraint
};

// Program header for ELF64.
struct Elf64_Phdr {
    Elf64_Word   p_type;   // Type of segment
    Elf64_Word   p_flags;  // Segment flags
    Elf64_Off    p_offset; // File offset where segment is located, in bytes
    Elf64_Addr   p_vaddr;  // Virtual address of beginning of segment
    Elf64_Addr   p_paddr;  // Physical addr of beginning of segment (OS-specific)
    Elf64_Xword  p_filesz; // Num. of bytes in file image of segment (may be zero)
    Elf64_Xword  p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    Elf64_Xword  p_align;  // Segment alignment constraint
};

// Segment types.
enum {
    PT_NULL    = 0, // Unused segment.
    PT_LOAD    = 1, // Loadable segment.
    PT_DYNAMIC = 2, // Dynamic linking information.
    PT_INTERP  = 3, // Interpreter pathname.
    PT_NOTE    = 4, // Auxiliary information.
    PT_SHLIB   = 5, // Reserved.
    PT_PHDR    = 6, // The program header table itself.
    PT_TLS     = 7, // The thread-local storage template.
    PT_LOOS    = 0x60000000, // Lowest operating system-specific pt entry type.
    PT_HIOS    = 0x6fffffff, // Highest operating system-specific pt entry type.
    PT_LOPROC  = 0x70000000, // Lowest processor-specific program hdr entry type.
    PT_HIPROC  = 0x7fffffff, // Highest processor-specific program hdr entry type.

    // x86-64 program header types.
    // These all contain stack unwind tables.
    PT_GNU_EH_FRAME  = 0x6474e550,
    PT_SUNW_EH_FRAME = 0x6474e550,
    PT_SUNW_UNWIND   = 0x6464e550,

    PT_GNU_STACK  = 0x6474e551, // Indicates stack executability.
    PT_GNU_RELRO  = 0x6474e552, // Read-only after relocation.

    // ARM program header types.
    PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info
    // These all contain stack unwind tables.
    PT_ARM_EXIDX   = 0x70000001,
    PT_ARM_UNWIND  = 0x70000001,

    // MIPS program header types.
    PT_MIPS_REGINFO  = 0x70000000,  // Register usage information.
    PT_MIPS_RTPROC   = 0x70000001,  // Runtime procedure table.
    PT_MIPS_OPTIONS  = 0x70000002,  // Options segment.
    PT_MIPS_ABIFLAGS = 0x70000003   // Abiflags segment.
};

// Segment flag bits.
enum : unsigned {
    PF_X        = 1,         // Execute
    PF_W        = 2,         // Write
    PF_R        = 4,         // Read
    PF_MASKOS   = 0x0ff00000,// Bits for operating system-specific semantics.
    PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
};

// Dynamic table entry for ELF32.
struct Elf32_Dyn
{
    Elf32_Sword d_tag;            // Type of dynamic table entry.
    union
    {
        Elf32_Word d_val;         // Integer value of entry.
        Elf32_Addr d_ptr;         // Pointer value of entry.
    } d_un;
};

// Dynamic table entry for ELF64.
struct Elf64_Dyn
{
    Elf64_Sxword d_tag;           // Type of dynamic table entry.
    union
    {
        Elf64_Xword d_val;        // Integer value of entry.
        Elf64_Addr  d_ptr;        // Pointer value of entry.
    } d_un;
};

// Dynamic table entry tags.
enum {
    DT_NULL         = 0,        // Marks end of dynamic array.
    DT_NEEDED       = 1,        // String table offset of needed library.
    DT_PLTRELSZ     = 2,        // Size of relocation entries in PLT.
    DT_PLTGOT       = 3,        // Address associated with linkage table.
    DT_HASH         = 4,        // Address of symbolic hash table.
    DT_STRTAB       = 5,        // Address of dynamic string table.
    DT_SYMTAB       = 6,        // Address of dynamic symbol table.
    DT_RELA         = 7,        // Address of relocation table (Rela entries).
    DT_RELASZ       = 8,        // Size of Rela relocation table.
    DT_RELAENT      = 9,        // Size of a Rela relocation entry.
    DT_STRSZ        = 10,       // Total size of the string table.
    DT_SYMENT       = 11,       // Size of a symbol table entry.
    DT_INIT         = 12,       // Address of initialization function.
    DT_FINI         = 13,       // Address of termination function.
    DT_SONAME       = 14,       // String table offset of a shared objects name.
    DT_RPATH        = 15,       // String table offset of library search path.
    DT_SYMBOLIC     = 16,       // Changes symbol resolution algorithm.
    DT_REL          = 17,       // Address of relocation table (Rel entries).
    DT_RELSZ        = 18,       // Size of Rel relocation table.
    DT_RELENT       = 19,       // Size of a Rel relocation entry.
    DT_PLTREL       = 20,       // Type of relocation entry used for linking.
    DT_DEBUG        = 21,       // Reserved for debugger.
    DT_TEXTREL      = 22,       // Relocations exist for non-writable segments.
    DT_JMPREL       = 23,       // Address of relocations associated with PLT.
    DT_BIND_NOW     = 24,       // Process all relocations before execution.
    DT_INIT_ARRAY   = 25,       // Pointer to array of initialization functions.
    DT_FINI_ARRAY   = 26,       // Pointer to array of termination functions.
    DT_INIT_ARRAYSZ = 27,       // Size of DT_INIT_ARRAY.
    DT_FINI_ARRAYSZ = 28,       // Size of DT_FINI_ARRAY.
    DT_RUNPATH      = 29,       // String table offset of lib search path.
    DT_FLAGS        = 30,       // Flags.
    DT_ENCODING     = 32,       // Values from here to DT_LOOS follow the rules
    // for the interpretation of the d_un union.

    DT_PREINIT_ARRAY = 32,      // Pointer to array of preinit functions.
    DT_PREINIT_ARRAYSZ = 33,    // Size of the DT_PREINIT_ARRAY array.

    DT_LOOS         = 0x60000000, // Start of environment specific tags.
    DT_HIOS         = 0x6FFFFFFF, // End of environment specific tags.
    DT_LOPROC       = 0x70000000, // Start of processor specific tags.
    DT_HIPROC       = 0x7FFFFFFF, // End of processor specific tags.

    DT_GNU_HASH     = 0x6FFFFEF5, // Reference to the GNU hash table.
    DT_RELACOUNT    = 0x6FFFFFF9, // ELF32_Rela count.
    DT_RELCOUNT     = 0x6FFFFFFA, // ELF32_Rel count.

    DT_FLAGS_1      = 0X6FFFFFFB, // Flags_1.
    DT_VERSYM       = 0x6FFFFFF0, // The address of .gnu.version section.
    DT_VERDEF       = 0X6FFFFFFC, // The address of the version definition table.
    DT_VERDEFNUM    = 0X6FFFFFFD, // The number of entries in DT_VERDEF.
    DT_VERNEED      = 0X6FFFFFFE, // The address of the version Dependency table.
    DT_VERNEEDNUM   = 0X6FFFFFFF, // The number of entries in DT_VERNEED.

    // Mips specific dynamic table entry tags.
    DT_MIPS_RLD_VERSION   = 0x70000001, // 32 bit version number for runtime
    // linker interface.
    DT_MIPS_TIME_STAMP    = 0x70000002, // Time stamp.
    DT_MIPS_ICHECKSUM     = 0x70000003, // Checksum of external strings
    // and common sizes.
    DT_MIPS_IVERSION      = 0x70000004, // Index of version string
    // in string table.
    DT_MIPS_FLAGS         = 0x70000005, // 32 bits of flags.
    DT_MIPS_BASE_ADDRESS  = 0x70000006, // Base address of the segment.
    DT_MIPS_MSYM          = 0x70000007, // Address of .msym section.
    DT_MIPS_CONFLICT      = 0x70000008, // Address of .conflict section.
    DT_MIPS_LIBLIST       = 0x70000009, // Address of .liblist section.
    DT_MIPS_LOCAL_GOTNO   = 0x7000000a, // Number of local global offset
    // table entries.
    DT_MIPS_CONFLICTNO    = 0x7000000b, // Number of entries
    // in the .conflict section.
    DT_MIPS_LIBLISTNO     = 0x70000010, // Number of entries
    // in the .liblist section.
    DT_MIPS_SYMTABNO      = 0x70000011, // Number of entries
    // in the .dynsym section.
    DT_MIPS_UNREFEXTNO    = 0x70000012, // Index of first external dynamic symbol
    // not referenced locally.
    DT_MIPS_GOTSYM        = 0x70000013, // Index of first dynamic symbol
    // in global offset table.
    DT_MIPS_HIPAGENO      = 0x70000014, // Number of page table entries
    // in global offset table.
    DT_MIPS_RLD_MAP       = 0x70000016, // Address of run time loader map,
    // used for debugging.
    DT_MIPS_DELTA_CLASS       = 0x70000017, // Delta C++ class definition.
    DT_MIPS_DELTA_CLASS_NO    = 0x70000018, // Number of entries
    // in DT_MIPS_DELTA_CLASS.
    DT_MIPS_DELTA_INSTANCE    = 0x70000019, // Delta C++ class instances.
    DT_MIPS_DELTA_INSTANCE_NO = 0x7000001A, // Number of entries
    // in DT_MIPS_DELTA_INSTANCE.
    DT_MIPS_DELTA_RELOC       = 0x7000001B, // Delta relocations.
    DT_MIPS_DELTA_RELOC_NO    = 0x7000001C, // Number of entries
    // in DT_MIPS_DELTA_RELOC.
    DT_MIPS_DELTA_SYM         = 0x7000001D, // Delta symbols that Delta
    // relocations refer to.
    DT_MIPS_DELTA_SYM_NO      = 0x7000001E, // Number of entries
    // in DT_MIPS_DELTA_SYM.
    DT_MIPS_DELTA_CLASSSYM    = 0x70000020, // Delta symbols that hold
    // class declarations.
    DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021, // Number of entries
    // in DT_MIPS_DELTA_CLASSSYM.
    DT_MIPS_CXX_FLAGS         = 0x70000022, // Flags indicating information
    // about C++ flavor.
    DT_MIPS_PIXIE_INIT        = 0x70000023, // Pixie information.
    DT_MIPS_SYMBOL_LIB        = 0x70000024, // Address of .MIPS.symlib
    DT_MIPS_LOCALPAGE_GOTIDX  = 0x70000025, // The GOT index of the first PTE
    // for a segment
    DT_MIPS_LOCAL_GOTIDX      = 0x70000026, // The GOT index of the first PTE
    // for a local symbol
    DT_MIPS_HIDDEN_GOTIDX     = 0x70000027, // The GOT index of the first PTE
    // for a hidden symbol
    DT_MIPS_PROTECTED_GOTIDX  = 0x70000028, // The GOT index of the first PTE
    // for a protected symbol
    DT_MIPS_OPTIONS           = 0x70000029, // Address of `.MIPS.options'.
    DT_MIPS_INTERFACE         = 0x7000002A, // Address of `.interface'.
    DT_MIPS_DYNSTR_ALIGN      = 0x7000002B, // Unknown.
    DT_MIPS_INTERFACE_SIZE    = 0x7000002C, // Size of the .interface section.
    DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002D, // Size of rld_text_resolve
    // function stored in the GOT.
    DT_MIPS_PERF_SUFFIX       = 0x7000002E, // Default suffix of DSO to be added
    // by rld on dlopen() calls.
    DT_MIPS_COMPACT_SIZE      = 0x7000002F, // Size of compact relocation
    // section (O32).
    DT_MIPS_GP_VALUE          = 0x70000030, // GP value for auxiliary GOTs.
    DT_MIPS_AUX_DYNAMIC       = 0x70000031, // Address of auxiliary .dynamic.
    DT_MIPS_PLTGOT            = 0x70000032, // Address of the base of the PLTGOT.
    DT_MIPS_RWPLT             = 0x70000034  // Points to the base
    // of a writable PLT.
};

// DT_FLAGS values.
enum {
    DF_ORIGIN     = 0x01, // The object may reference $ORIGIN.
    DF_SYMBOLIC   = 0x02, // Search the shared lib before searching the exe.
    DF_TEXTREL    = 0x04, // Relocations may modify a non-writable segment.
    DF_BIND_NOW   = 0x08, // Process all relocations on load.
    DF_STATIC_TLS = 0x10  // Reject attempts to load dynamically.
};

// State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry.
enum {
    DF_1_NOW        = 0x00000001, // Set RTLD_NOW for this object.
    DF_1_GLOBAL     = 0x00000002, // Set RTLD_GLOBAL for this object.
    DF_1_GROUP      = 0x00000004, // Set RTLD_GROUP for this object.
    DF_1_NODELETE   = 0x00000008, // Set RTLD_NODELETE for this object.
    DF_1_LOADFLTR   = 0x00000010, // Trigger filtee loading at runtime.
    DF_1_INITFIRST  = 0x00000020, // Set RTLD_INITFIRST for this object.
    DF_1_NOOPEN     = 0x00000040, // Set RTLD_NOOPEN for this object.
    DF_1_ORIGIN     = 0x00000080, // $ORIGIN must be handled.
    DF_1_DIRECT     = 0x00000100, // Direct binding enabled.
    DF_1_TRANS      = 0x00000200,
    DF_1_INTERPOSE  = 0x00000400, // Object is used to interpose.
    DF_1_NODEFLIB   = 0x00000800, // Ignore default lib search path.
    DF_1_NODUMP     = 0x00001000, // Object can't be dldump'ed.
    DF_1_CONFALT    = 0x00002000, // Configuration alternative created.
    DF_1_ENDFILTEE  = 0x00004000, // Filtee terminates filters search.
    DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time.
    DF_1_DISPRELPND = 0x00010000  // Disp reloc applied at run-time.
};

// DT_MIPS_FLAGS values.
enum {
    RHF_NONE                    = 0x00000000, // No flags.
    RHF_QUICKSTART              = 0x00000001, // Uses shortcut pointers.
    RHF_NOTPOT                  = 0x00000002, // Hash size is not a power of two.
    RHS_NO_LIBRARY_REPLACEMENT  = 0x00000004, // Ignore LD_LIBRARY_PATH.
    RHF_NO_MOVE                 = 0x00000008, // DSO address may not be relocated.
    RHF_SGI_ONLY                = 0x00000010, // SGI specific features.
    RHF_GUARANTEE_INIT          = 0x00000020, // Guarantee that .init will finish
    // executing before any non-init
    // code in DSO is called.
    RHF_DELTA_C_PLUS_PLUS       = 0x00000040, // Contains Delta C++ code.
    RHF_GUARANTEE_START_INIT    = 0x00000080, // Guarantee that .init will start
    // executing before any non-init
    // code in DSO is called.
    RHF_PIXIE                   = 0x00000100, // Generated by pixie.
    RHF_DEFAULT_DELAY_LOAD      = 0x00000200, // Delay-load DSO by default.
    RHF_REQUICKSTART            = 0x00000400, // Object may be requickstarted
    RHF_REQUICKSTARTED          = 0x00000800, // Object has been requickstarted
    RHF_CORD                    = 0x00001000, // Generated by cord.
    RHF_NO_UNRES_UNDEF          = 0x00002000, // Object contains no unresolved
    // undef symbols.
    RHF_RLD_ORDER_SAFE          = 0x00004000  // Symbol table is in a safe order.
};

// ElfXX_VerDef structure version (GNU versioning)
enum {
    VER_DEF_NONE    = 0,
    VER_DEF_CURRENT = 1
};

// VerDef Flags (ElfXX_VerDef::vd_flags)
enum {
    VER_FLG_BASE = 0x1,
    VER_FLG_WEAK = 0x2,
    VER_FLG_INFO = 0x4
};

// Special constants for the version table. (SHT_GNU_versym/.gnu.version)
enum {
    VER_NDX_LOCAL  = 0,      // Unversioned local symbol
    VER_NDX_GLOBAL = 1,      // Unversioned global symbol
    VERSYM_VERSION = 0x7fff, // Version Index mask
    VERSYM_HIDDEN  = 0x8000  // Hidden bit (non-default version)
};

// ElfXX_VerNeed structure version (GNU versioning)
enum {
    VER_NEED_NONE = 0,
    VER_NEED_CURRENT = 1
};

struct ElfTypes32 {
    typedef Elf32_Addr Addr;
    typedef Elf32_Off Off;
    typedef Elf32_Half Half;
    typedef Elf32_Word Word;
    typedef Elf32_Sword Sword;
    typedef Elf32_Ehdr Ehdr;
    typedef Elf32_Shdr Shdr;
    typedef Elf32_Sym Sym;
    typedef Elf32_Rel Rel;
    typedef Elf32_Rela Rela;
    typedef Elf32_Phdr Phdr;
    typedef Elf32_Dyn Dyn;
};

struct ElfTypes64 {
    typedef Elf64_Addr Addr;
    typedef Elf64_Off Off;
    typedef Elf64_Half Half;
    typedef Elf64_Word Word;
    typedef Elf64_Sword Sword;
    typedef Elf64_Xword Xword;
    typedef Elf64_Sxword Sxword;
    typedef Elf64_Ehdr Ehdr;
    typedef Elf64_Shdr Shdr;
    typedef Elf64_Sym Sym;
    typedef Elf64_Rel Rel;
    typedef Elf64_Rela Rela;
    typedef Elf64_Phdr Phdr;
    typedef Elf64_Dyn Dyn;
};
#endif //TELF_H

运行encryptSection.cpp,打印显示如下

那么现在在lib目录下的libdemo.so就是一个被加密特定section的so文件

(四)被加密so文件的使用

使用这个被加密特定section的so有两种方法,第一种就是新建一个app工程调用它,第二种是将在(一)中编译产生的app-debug.apk进行反编译,替换调原来的so,再重打包,签名,最后安装。

第二种试过,可以用,这里我们采用第一种方法。

1.as中新建一个工程,选择empty activity,创建完成后,修改并添加目录结构如下:

简单so加密app案例(一)_第2张图片

MainActivity.java代码如下:

package com.encode.sofile;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {
    static {
        System.loadLibrary("demo");
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        // Example of a call to a native method
        TextView tv = findViewById(R.id.sample_text);
        tv.setText(getString());
    }

    public native String getString();
}

注意这个包路径一定要和(一)中的包路径一样

build.gradle代码如下:

apply plugin: 'com.android.application'

android {
    compileSdkVersion 30
    buildToolsVersion "30.0.2"

    defaultConfig {
        applicationId "com.encode.sofile"
        minSdkVersion 21
        targetSdkVersion 30
        versionCode 1
        versionName "1.0"

        testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
    }

    buildTypes {
        release {
            minifyEnabled false
            proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
        }
    }

    // 需要添加如下代码
    sourceSets{
        main{
            jniLibs.srcDirs=['libs']
        }
    }

}

dependencies {
    implementation fileTree(dir: "libs", include: ["*.jar"])
    implementation 'androidx.appcompat:appcompat:1.2.0'
    implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
    testImplementation 'junit:junit:4.12'
    androidTestImplementation 'androidx.test.ext:junit:1.1.2'
    androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

}

编译并安装app,日志打印如下:

com.encode.sofile I/testApp: base:0xf4274000  nblock:0x38  nsize:0x3
com.encode.sofile I/testApp: addr:80
com.encode.sofile I/testApp: addr:b5
com.encode.sofile I/testApp: addr:6f
com.encode.sofile I/testApp: addr:46
com.encode.sofile I/testApp: addr:82
com.encode.sofile I/testApp: addr:b0
com.encode.sofile I/testApp: addr:1
com.encode.sofile I/testApp: addr:90
com.encode.sofile I/testApp: addr:8
com.encode.sofile I/testApp: addr:49
com.encode.sofile I/testApp: addr:79
com.encode.sofile I/testApp: addr:44
com.encode.sofile I/testApp: addr:8
com.encode.sofile I/testApp: addr:4a
com.encode.sofile I/testApp: addr:7a
com.encode.sofile I/testApp: addr:44
com.encode.sofile I/testApp: addr:4
com.encode.sofile I/testApp: addr:20
com.encode.sofile I/testApp: addr:fe
com.encode.sofile I/testApp: addr:f7
com.encode.sofile I/testApp: addr:ba
com.encode.sofile I/testApp: addr:ea
com.encode.sofile I/testApp: addr:1
com.encode.sofile I/testApp: addr:99
com.encode.sofile I/testApp: addr:6
com.encode.sofile I/testApp: addr:4a
com.encode.sofile I/testApp: addr:7a
com.encode.sofile I/testApp: addr:44
com.encode.sofile I/testApp: addr:0
com.encode.sofile I/testApp: addr:90
com.encode.sofile I/testApp: addr:8
com.encode.sofile I/testApp: addr:46
com.encode.sofile I/testApp: addr:11
com.encode.sofile I/testApp: addr:46
com.encode.sofile I/testApp: addr:fe
com.encode.sofile I/testApp: addr:f7
com.encode.sofile I/testApp: addr:b8
com.encode.sofile I/testApp: addr:ea
com.encode.sofile I/testApp: addr:2
com.encode.sofile I/testApp: addr:b0
com.encode.sofile I/testApp: addr:80
com.encode.sofile I/testApp: addr:bd
com.encode.sofile I/testApp: addr:0
com.encode.sofile I/testApp: addr:bf
com.encode.sofile I/testApp: addr:96
com.encode.sofile I/testApp: addr:3
com.encode.sofile I/testApp: addr:0
com.encode.sofile I/testApp: addr:0
com.encode.sofile I/testApp: addr:9a
com.encode.sofile I/testApp: addr:3
com.encode.sofile I/testApp: addr:0
com.encode.sofile I/testApp: addr:0
com.encode.sofile I/testApp: addr:aa
com.encode.sofile I/testApp: addr:3
com.encode.sofile I/testApp: addr:0
com.encode.sofile I/testApp: addr:0
com.encode.sofile I/testApp: Decrypt success
com.encode.sofile I/testApp: 加载成功111111!!!

并且app正常加载,经测试发现该app在android 6可以正常加载,但是在android 7.1  8.0 测试报错:dlopen failed: "/data/app/com.encode.sofile-lB_-BwHxKfanaXEfodP92w==/lib/arm/libdemo.so" .dynamic section header was not found。

原因是:Android7.0后JNI库必须保留Section Headers。由于加密时修改了shoff值,导致加载so时解析Section Headers 解析不了。

解决方案:shoff和entry目的是为了存储加密的偏移大小和加密的大小。我们可以使用entry高低16位来分别存储着两个值。即可解决该问题。

你可能感兴趣的:(c++,ndk,android,java)