- 邻近巷道爆破振动模拟与可视化:计算力学的工程应用
碳酸的唐
动态规划数学建模
引言隧道爆破施工是现代工程建设中常用的方法,但爆破产生的振动会对周围结构和地质环境产生影响。本文介绍一个基于Python的邻近巷道爆破振动模拟系统,该系统通过数值计算模拟爆破引起的应力波传播过程,并提供多种可视化方式展示振动效应。本研究对于理解爆破振动机理、评估爆破安全距离以及优化爆破参数具有重要意义。理论基础爆破应力波传播模型爆破引起的应力波在岩体中的传播可通过弹性波动理论描述。在均匀介质中,应
- 【领码思考】ESG画卷里的项目管理新篇:AI赋能下的绿色智造之路
领码科技
央国企理念篇AI应用人工智能ESG项目管理AI赋能绿色转型可持续发展
摘要ESG(环境、社会、治理)理念正悄然融入项目管理的每个细胞,成为驱动项目成功的新引擎。本文聚焦ESG如何与项目管理深度融合,立体呈现各阶段ESG应用场景,围绕AI与数字化工具的协同赋能,解析项目经理如何在绿色转型中实现角色跃迁。通过流程图与表格精炼框架,强化理论指导与实践操作,并结合当下热点新技术,旨在为项目团队和企业管理层提供清晰可落地的全周期ESG实施路径,开启项目管理可持续发展的智慧新纪
- 2025版最新渗透测试入门教程,从零基础入门到精通,从看这篇开始!
Python_chichi
网络安全安全系统安全web安全
目录渗透测试:不只是找Bug,更是“攻心”?渗透测试“十八般武艺”:你练哪一种?渗透测试“套路”深:六大流派,谁是天下第一?(待续)渗透测试兵器谱:神兵利器大盘点(待续)渗透测试实战演习:看我如何“偷”走你的秘密(待续)从小白到大神:渗透测试修炼手册前言:别再啃那些枯燥的教科书了!想入行网络安全?想玩转渗透测试?别再抱着那些过时的教程死记硬背了!这玩意儿,光靠理论可不行,得结合实战,还得有点“玄学
- 大数据 ETL 工具 Sqoop 深度解析与实战指南
一、Sqoop核心理论与应用场景1.1设计思想与技术定位Sqoop是Apache旗下的开源数据传输工具,核心设计基于MapReduce分布式计算框架,通过并行化的Map任务实现高效的数据批量迁移。其特点包括:批处理特性:基于MapReduce作业实现导入/导出,适合大规模离线数据迁移,不支持实时数据同步。异构数据源连接:支持关系型数据库(如MySQL、Oracle)与Hadoop生态(HDFS、H
- 动手实践OpenHands系列学习笔记12:测试与质量保证
JeffWoodNo.1
笔记
笔记12:测试与质量保证一、引言软件测试和质量保证是确保AI代理系统可靠性和稳定性的关键环节。对于像OpenHands这样的复杂AI系统,测试尤其具有挑战性,因为需要验证系统在各种条件下的行为一致性。本笔记将探讨AI系统测试的独特策略,分析OpenHands的测试需求,并通过实践为关键模块构建测试套件。二、AI系统测试策略理论2.1AI系统测试的特殊挑战不确定性处理:AI系统输出可能存在固有的不确
- 动手实践OpenHands系列学习笔记11:现代开发流程
笔记11:现代开发流程一、引言现代软件开发流程是确保高质量代码交付和团队协作的关键基础。随着软件开发复杂度的增加,自动化工具链和规范化流程变得尤为重要。本笔记将探讨CI/CD管道设计原理,分析OpenHands项目的开发流程,并通过实践搭建一个简化版的OpenHands开发环境。二、CI/CD管道设计理论2.1持续集成(CI)基本概念定义:频繁地将代码集成到主分支,并自动化验证每次集成核心原则:频
- 实战演练:用 AWS Lambda 和 API Gateway 构建你的第一个 Serverless API
实战演练:用AWSLambda和APIGateway构建你的第一个ServerlessAPI理论千遍,不如动手一遍!在前面几篇文章中,我们了解了Serverless的概念、FaaS的核心原理以及BaaS的重要作用。现在,是时候把这些知识运用起来,亲手构建一个简单但完整的Serverless应用了。本次实战,我们将使用AmazonWebServices(AWS)这个主流的云平台,结合它的两个核心Se
- CHAIN(GAN的一种)训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络深度学习pytorch算法
简介简介:作者针对数据有限场景下GANs训练中的判别器过拟合问题,提出了CHAIN(Lipschitz连续性约束归一化)方法。作者首先从理论角度分析了GAN泛化误差,发现减少判别器权重梯度范数对提升泛化能力至关重要。然后深入研究了批归一化(BN)在GAN判别器中应用困难的根本原因,通过理论分析证明BN的中心化和缩放步骤会导致梯度爆炸。基于这些发现,CHAIN设计了两个核心模块:用零均值正则化替代中
- 大模型的MoE架构解析:从理论到应用的系统探讨
不秃头de程序猿
开发语言转行人工智能ai大模型程序员学习
MixtureofExperts(专家混合)架构正在重新定义大语言模型的发展轨迹。这种革命性的架构通过条件计算实现了万亿参数规模的模型,同时保持与千亿参数密集模型相当的计算成本。从GPT-4的1.8万亿参数到DeepSeek-V3的671亿参数,MoE架构已成为当前AI领域最重要的技术突破之一。MoE的核心洞察在于"不是所有的模型容量都需要同时激活"——通过让不同的专家网络处理不同类型的输入,实现
- 入门 | 现代量子理论与量子计算原理
Turbo正则
量子密码学量子计算
一、经典计算经典计算本质上需要二进制处理,将数据存储在比特中。一个比特总是处于两种不同的物理状态之一,由单个二进制值表示,通常表示为0或1。比特通过电路中连接的晶体管物理存储在内存中。器件的本征电容使其能够存储电荷。每个比特的电荷定义了其状态,进而决定了其值。晶体管通常由半导体材料(如硅)制成。MOSFET,即金属-氧化物-半导体场效应晶体管,是一种绝缘栅场效应晶体管(IGFET),通过有意氧化半
- Boostrap方法的理解及应用
Xiaofei@IDO
统计学概率论机器学习数据挖掘
1、Boostrap介绍1.1概念性解释Boostrap统计学方法是一种非参数检验方法,用于估计各种统计量的置信区间。Boostrap计算步骤简单的描述为:通过有放回的数据集的重采样,产生一系列的待检验统计量的Boostrap经验分布。基于该分布,计算标准误差,构建置信区间,并对多种类型的样本进行统计信息和假设检验。Boostrap统计学方法使用范围比较广,因为它不需要假定数据服从特定的理论分布(
- 隐马尔可夫模型:语音识别系统的时序解码引擎
大千AI助手
人工智能Python#OTHER语音识别人工智能机器学习概率马尔科夫链HMM
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!1HMM与语音识别的理论基础隐马尔可夫模型(HMM)作为一种双重随机过程的统计模型,其核心在于描述一个包含隐含状态的马尔可夫链,以及这些状态生成可观测输出的概率分布。在语音识别领域,HMM的时序建模能力与语音信号的特性形成了完美契合:隐含状态:对应语音
- Python 的内置函数 repr
IMPYLH
python笔记
Python内建函数列表>Python的内置函数reprPython的内置函数repr()是一个非常重要的对象字符串表示函数,其主要功能是返回一个对象的"官方"字符串表示形式(通常称为"representation")。这个字符串通常能够被Python解释器读取,并尽可能准确地重建该对象。详细特性:可重建性原则:repr()返回的字符串理论上应该能够通过eval()函数重新构造出原对象与str()
- 深入解析VAE:从理论到PyTorch实战,一步步构建你的AI“艺术家”
电脑能手
人工智能深度学习python
摘要:你是否好奇AI如何“凭空”创造出从未见过的人脸或画作?变分自编码器(VAE)就是解开这一谜题的关键钥匙之一。本文将带你从零开始,深入浅出地剖析VAE的迷人世界。我们将用生动的比喻解释其核心思想,拆解其背后的数学原理(KL散度与重参数技巧),并最终用PyTorch代码手把手地构建、训练和可视化一个完整的VAE模型。无论你是初学者还是有一定经验的开发者,相信这篇文章都能让你对生成模型有一个全新的
- 健康管理实训基地建设要点:赋能健康管理人才培养
凯禾瑞华健康管理实训室建设
健康管理实训室健康管理人才培养产教融合虚拟仿真
在健康中国战略背景下,健康管理实训基地作为连接理论与实践的重要桥梁,其建设质量直接关系到复合型健康服务人才的培养成效。一、健康管理实训基地科学规划健康管理实训基地的规划设计需遵循“以人为本、功能复合、适度超前”原则,构建集教学、科研、服务于一体的综合性平台。在选址上,应优先选择交通便利、环境宜人的区域,确保实训环境与真实工作场景的高度契合。建筑布局需融入人性化设计理念,如设置无障碍通道、防滑地面、
- 《小学生作文辅导》期刊投稿邮箱
《小学生作文辅导》是国家新闻出版总署批准的正规教育类期刊,适用于全国各小学语文老师事业单位及个人,具有原创性的学术理论、工作实践、科研成果和科研课题及相关领域等人员评高级职称时的论文发表(单位有特殊要求除外)。栏目设置:写法导引、智慧阅读、课堂建设、课堂建设、教学透视、教育撷英等。刊名:小学生作文辅导级别:省级主管单位:吉林出版集团股份有限公司主办单位:北方妇女儿童出版社有限责任公司ISSN:16
- 结构学习的理论
刘海东刘海东
机器人人工智能
结构学习的理论作者:刘海东,中国广东技术师范大学摘要这是第一篇研究结构学习的理论的论文,第一个部分概括了结构学习的整体构想,第二部分提出了结构学习的环境逻辑宇宙,第三、第四、第五部分阐述了中央图处理器、软件图、图思维的理论,以中央图处理器为机器脑,以软件图为机器身体,以图思维为机器生命活动,第六部分说明了机器生命和结构学习的现有研究成果。全文的主旨是向人类社会推荐机器生命结构学习的思想。关键词:结
- 逻辑结构学派一(五个基础理论)
刘海东刘海东
人工智能
逻辑结构学派一(五个基础理论)作者:刘海东,中国广东技术师范大学摘要本篇论文通过《逻辑结构学派的宗旨》、《逻辑结构学》、《逻辑工程学》、《逻辑方程结构图理论》、《仿生逻辑理论》五个领域的研究提出《逻辑结构学派的宗旨》、《主观能动性结构》、《主观能动性结构工程》、《赋予生命的逻辑方程结构图》、《仿生逻辑》五个基础经典理论,让人工智能、机器人、智能社会三个主体的基础研究有了方向、方法和判断标准。关键词
- 新能源汽车功率级测试自动化方案:从理论到实践的革命性突破
Loving_enjoy
计算机学科论文创新点深度学习人工智能经验分享facebook
>在800V高压平台普及与碳化硅半导体爆发的双轮驱动下,传统测试方法正经历颠覆性变革“当我看到工程师手动记录测试数据时,就知道这个行业需要一场革命。”——某新能源车企测试总监的深夜感慨##01新能源汽车测试的痛点与变革当新能源汽车的**电驱系统功率密度突破4kW/kg**,**800V高压平台**成为行业标配,传统测试方法已无法满足产业需求。功率级测试作为三电系统验证的核心环节,正面临三大致命瓶颈
- 遗传算法:原理、实现与应用的全面解析
2后啥样
算法
摘要本文深入探讨遗传算法这一模拟自然进化过程的计算模型,详细阐述其核心原理、关键步骤、实现方式及在多领域的应用。通过分析遗传算法与传统优化算法的差异,结合实际案例展示其在解决复杂优化问题上的优势,并探讨算法的改进策略与未来发展趋势,旨在为相关领域研究和实践提供全面理论支撑与实践指导,助力解决复杂优化难题,推动技术创新与发展。一、引言在现代科学与工程领域,诸多问题可归结为优化问题,如资源分配、路径规
- 遗传算法的原理与实现示例
遗传算法是一种受生物进化理论启发的随机优化算法,其核心思想是模拟自然界中“物竞天择、适者生存”的进化过程,通过对候选解的迭代优化,找到问题的最优解。一、核心思想 遗传算法将优化问题的候选解视为生物群体中的“个体”,每个个体的“基因”对应解的参数。通过模拟生物进化中的选择、交叉、变异等过程,让群体中“适应性强”(即更接近最优解)的个体保留并繁衍,“适应性弱”的个体被淘汰,最终使群体逐渐逼近最优
- 网络安全理论第二章
阿瓒119
网络安全
2.1影响信息安全的隐患(脆弱性)先天不足——网络协议有缺陷网络应用层的安全隐患IP层通信的欺骗性(假冒身份)局域网中以太网协议的数据传输机制是广播发送,使得系统和网络具有易被监视性(监听账号和密码)2.1影响信息安全的隐患(脆弱性)先天不足——系统软件有缺陷操作系统有漏洞应用软件有陷门数据库管理系统的脆弱性SQLServer数据库,超级管理员saMySQL数据库,信息数据库I
- 代码随想录算法训练营第二十一天|回溯算法理论基础,77. 组合
丁希希哇
力扣算法刷题算法面试python力扣数据结构剪枝
系列文章目录代码随想录算法训练营第一天|数组理论基础,704.二分查找,27.移除元素代码随想录算法训练营第二天|977.有序数组的平方,209.长度最小的子数组,59.螺旋矩阵II代码随想录算法训练营第三天|链表理论基础,203.移除链表元素,707.设计链表,206.反转链表代码随想录算法训练营第四天|24.两两交换链表中的节点,19.删除链表的倒数第N个节点,面试题02.07.链表相交,14
- 【回溯算法】|代码随想录算法训练营第19天|77. 组合、216.组合总和III、17.电话号码的字母组合
小白糖的狗狗叫鸡蛋
15-数据结构与算法算法redis数据库
刷题神器代码随想录往期回顾>【二叉树】|代码随想录算法训练营第18天|669.修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树、【总结】题目理论基础文章:文章讲解视频:视频讲解回溯算法并不是一个高效算法,它的目的是穷举,替代多层for循环,回溯算法和递归算法相关纠缠,在递归的前后要进行回溯,回溯算法可以理解为树型结构,树的宽度就是for循环的范围,树的深度就是递
- 科学的第五范式:人工智能如何重塑发现之疆
田园Coder
人工智能科普人工智能科普
在人类探索未知的壮阔史诗中,科学方法的演进如同照亮迷雾的灯塔。从基于经验的第一范式(描述自然现象),到以理论推演为核心的第二范式(牛顿定律、麦克斯韦方程),再到以计算机模拟为标志的第三范式(气候模型、分子动力学),直至以大数据挖掘为驱动的第四范式(基因组学、高能物理),每一次范式跃迁都极大地拓展了认知的疆界。如今,我们正站在一个更恢弘转折的门槛上——第五范式:人工智能驱动的科学(AIforScie
- 字节跳动 C++ QT PC客户端面试
十年编程老舅
QT开发c++qt面试qt面试题qt八股文qt面经c++八股文
字节跳动C++QtPC客户端面试,总共三轮技术面(一面10道、二面20道、三面20道)为了帮助更多的同学拿到满意的offer,我把一二三面共50道面试题整理发布出来~供大家学习参考~很多同学认为,面试问理论知识,就是八股文,实际工作中没有太大用处。但事实上,所谓的“八股文”,本质是经过提炼和标准化的专业术语和通用认知体系,它是我们高效沟通、协作和解决问题的基础。换句话说,掌握并能准确使用这些“八股
- 【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(4)神经网络中的重要组件
第三章:神经网络原理详解与Pytorch入门第一部分:神经网络算法理论详解与实践第四节:神经网络中的重要组件内容:激活函数、loss函数、dropout、梯度消失与爆炸、过拟合与欠拟合神经网络的性能依赖于多个关键组件的合理设计与使用。理解这些组件有助于构建更加稳健且高效的模型。一、激活函数(ActivationFunction)【深度学习】关键技术-激活函数(ActivationFunctions
- OpenCASCADE学习|点云可视化深度优化指南
老歌老听老掉牙
OpenCASCADE学习c++opencascade点云
在三维可视化领域,点云数据的渲染效果直接影响用户对数据的理解和分析。OpenCASCADE作为强大的几何内核,其点云可视化能力常因默认参数设置导致点尺寸过小、颜色单调、层次不清等问题。本文将深入探讨点云渲染的优化策略,通过理论分析与实践案例结合,全面提升点云可视化效果。点云渲染核心问题分析点云可视化效果不佳的根本原因在于默认参数与实际需求不匹配。当使用基础代码创建点云时:Handle(AIS_Po
- 第G1周:生成对抗网络(GAN)入门
本文为365天深度学习训练营原作者:K同学啊基础任务:1.了解什么是生成对抗网络2.生成对抗网络结构是怎么样的3.学习本文代码,并跑通代码进阶任务:调用训练好的模型生成新图像一、理论基础生成对抗网络(GenerativeAdversarialNetworks,GAN)是近年来深度学习领域的一个热点方向。GAN并不指代某一个具体的神经网络,而是指一类基于博弈思想而设计的神经网络。GAN由两个分别被称
- 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?
人工智能教学实践
python编程实践人工智能学习人工智能
要深入理解人工智能工程技术专业与其他信息技术专业的关联性,需要跳出单一专业的学习框架,通过“理论筑基-实践串联-跨学科整合”的路径构建系统性认知。以下是分阶段、可落地的学习方法:一、建立“专业关联”的理论认知框架绘制知识关联图谱操作方法:用XMind或Notion绘制思维导图,以AI为中心,辐射关联专业的核心技术节点。例如:AI(机器学习)├─数据支撑:大数据技术(Hadoop/Spark)+数据
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&