Linux系统启动过程分析(主要是加载内核前的动作)
经过对Linux系统有了一定了解和熟悉后,想对其更深层次的东西做进一步探究。这当中就包括系统的启动流程、文件系统的组成结构、基于动态库和静态库的程序在执行时的异同、协议栈的架构和原理、驱动程序的机制等等。
本人在综合了现有网上大家智慧的基础上,结合对2.6.32的内核代码的研读,基于CentOS 6.0系统对Linux的启动流程做了些分析。由于才疏学浅,知识所限,有些地方分析不妥之处还请各位高手不吝赐教。
OK,我们言归正传。对于一台安装了Linux系统的主机来说,当用户按下开机按钮时,一共要经历以下几个过程,如图:
其中,每个过程都执行了自己该做的初始化部分的事情,有些过程又可分为好几个子过程。接下来,我们就对每个阶段做一个详细分析和讲解。
稍有计算机基础的人都应该听过BIOS(Basic Input / Output System),又称基本输入输出系统,可以视为是一个永久地记录在ROM中的一个软件,是操作系统输入输出管理系统的一部分。早期的BIOS芯片确实是"只读"的,里面的内容是用一种烧录器写入的,一旦写入就不能更改,除非更换芯片。现在的主机板都使用一种叫Flash EPROM的芯片来存储系统BIOS,里面的内容可通过使用主板厂商提供的擦写程序擦除后重新写入,这样就给用户升级BIOS提供了极大的方便。
BIOS的功能由两部分组成,分别是POST码和Runtime服务。POST阶段完成后它将从存储器中被清除,而Runtime服务会被一直保留,用于目标操作系统的启动。BIOS两个阶段所做的详细工作如下:
步骤1:上电自检POST(Power-on self test),主要负责检测系统外围关键设备(如:CPU、内存、显卡、I/O、键盘鼠标等)是否正常。例如,最常见的是内存松动的情况,BIOS自检阶段会报错,系统就无法启动起来;
步骤2:步骤1成功后,便会执行一段小程序用来枚举本地设备并对其初始化。这一步主要是根据我们在BIOS中设置的系统启动顺序来搜索用于启动系统的驱动器,如硬盘、光盘、U盘、软盘和网络等。我们以硬盘启动为例,BIOS此时去读取硬盘驱动器的第一个扇区(MBR,512字节),然后执行里面的代码。实际上这里BIOS并不关心启动设备第一个扇区中是什么内容,它只是负责读取该扇区内容、并执行。
至此,BIOS的任务就完成了,此后将系统启动的控制权移交到MBR部分的代码。
PS: 在个人电脑中,Linux的启动是从0xFFFF0地址开始的。
磁盘分区表包含以下三部分:
1)、Partition ID (5:延申 82:Swap 83:Linux 8e:LVM fd:RAID)
2)、Partition起始磁柱
3)、Partition的磁柱数量
通常情况下,诸如lilo、grub这些常见的引导程序都直接安装在MBR中。我们以grub为例来分析这个引导过程。
grub引导也分为两个阶段stage1阶段和stage2阶段(有些较新的grub又定义了stage1.5阶段)。
1)、stage1:stage1是直接被写入到MBR中去的,这样机器一启动检测完硬件后,就将控制权交给了GRUB的代码。也就是上图所看到的前446个字节空间中存放的是stage1的代码。BIOS将stage1载入内存中0x7c00处并跳转执行。stage1(/stage1/start.S)的任务非常单纯,仅仅是将硬盘0头0道2扇区读入内存。而0头0道2扇区内容是源代码中的/stage2/start.S,编译后512字节,它是stage2或者stage1_5的入口。而此时,stage1是没有识别文件系统的能力的。如果感觉脑子有些晕了,那么下面的过程就直接跳过,去看stage2吧!
【外传】定位硬盘的0头0道2扇区的过程:
BIOS将stage1载入内存0x7c00处并执行,然后调用BIOS INIT13中断,将硬盘0头0道2扇区内容载入内存0x7000处,然后调用copy_buffer将其转移到内存0x8000处。在定位0头0道2扇区时通常有两种寻址方式:LBA和CHS。如果你是刨根问底儿型的爱好者,那么此时去找谷哥打听打听这两种方式的来龙去脉吧。
2)、stage2:严格来说这里还应该再区分个stage1.5的,就一并把stage1.5放在这里一起介绍了,免得大家看得心里乱哄哄的。好的,我们继续说0头0到2扇区的/stage2/start.S文件,当它的内容被读入到内存之后,它的主要作用就是负责将stage2或stage1.5从硬盘读到内存中。如果是stage2,它将被载入到0x820处;如果是stage1.5,它将被载入到0x2200处。这里的stage2或者stage1_5不是/boot分区/boot/grub目录下的文件,因为这个时候grub还没有能力识别任何文件系统。
? 如果start.S加载stage1.5:stage1.5它存放在硬盘0头0道3扇区向后的位置,stage1_5作为stage1和stage2中间的桥梁,stage1_5有识别文件系统的能力,此后grub才有能力去访问/boot分区/boot/grub目录下的 stage2文件,将stage2载入内存并执行。
? 如果start.S加载stage2:同样,这个stage2也不是/boot分区/boot/grub目录下的stage2,这个时候start.S读取的是存放在/boot分区Boot Sector的stage2。这种情况下就有一个限制:因为start.S通过BIOS中断方式直接对硬盘寻址(而非通过访问具体的文件系统),其寻址范围有限,限制在8GB以内。因此这种情况需要将/boot分区分在硬盘8GB寻址空间之前。
假如是情形2,我们将/boot/grub目录下的内容清空,依然能成功启动grub;假如是情形1,将/boot/grub目录下stage2删除后,则系统启动过程中grub会启动失败。
当stage2被载入内存执行时,它首先会去解析grub的配置文件/boot/grub/grub.conf,然后加载内核镜像到内存中,并将控制权转交给内核。而内核会立即初始化系统中各设备并做相关的配置工作,其中包括CPU、I/O、存储设备等。
关于Linux的设备驱动程序的加载,有一部分驱动程序直接被编译进内核镜像中,另一部分驱动程序则是以模块的形式放在initrd(ramdisk)中。
Linux内核需要适应多种不同的硬件架构,但是将所有的硬件驱动编入内核又是不实际的,而且内核也不可能每新出一种硬件结构,就将该硬件的设备驱动写入内核。实际上Linux的内核镜像仅是包含了基本的硬件驱动,在系统安装过程中会检测系统硬件信息,根据安装信息和系统硬件信息将一部分设备驱动写入 initrd 。这样在以后启动系统时,一部分设备驱动就放在initrd中来加载。这里有必要给大家再多介绍一下initrd这个东东:
initrd 的英文含义是 bootloader initialized RAM disk,就是由 boot loader 初始化的内存盘。在 linu2.6内核启动前,boot loader 会将存储介质中的 initrd 文件加载到内存,内核启动时会在访问真正的根文件系统前先访问该内存中的 initrd 文件系统。在 boot loader 配置了 initrd 的情况下,内核启动被分成了两个阶段,第一阶段先执行 initrd 文件系统中的init,完成加载驱动模块等任务,第二阶段才会执行真正的根文件系统中的 /sbin/init 进程。
另外一个概念:initramfs
initramfs 是在 kernel 2.5中引入的技术,实际上它的含义就是:在内核镜像中附加一个cpio包,这个cpio包中包含了一个小型的文件系统,当内核启动时,内核将这个 cpio包解开,并且将其中包含的文件系统释放到rootfs中,内核中的一部分初始化代码会放到这个文件系统中,作为用户层进程来执行。这样带来的明显的好处是精简了内核的初始化代码,而且使得内核的初始化过程更容易定制。
疑惑的是:我的内核是2.6.32-71.el6.i686版本,但在我的/boot分区下面却存在的是/boot/initramfs-2.6.32-71.el6.i686.img类型的文件,没搞明白,还望高人解惑。我只知道在2.6内核中支持两种格式的initrd,一种是2.4内核的文件系统镜像image-initrd,一种是cpio格式。接下来我们就来探究一下initramfs-2.6.32-71.el6.i686.img里到底放了那些东西。 在tmp文件夹中解压initrd.img里的内容:
如果initrd.img文件的格式显示为“initrd.img:ISO 9660 CD-ROM filesystem data”,则可直接输入命令“mount -o loop initrd.img /mnt/test”进行挂载。
通过上的分析和我们的验证,我们确实得到了这样的结论:
grub的stage2将initrd加载到内存里,让后将其中的内容释放到内容中,内核便去执行initrd中的init脚本,这时内核将控制权交给了init文件处理。我们简单浏览一下init脚本的内容,发现它也主要是加载各种存储介质相关的设备驱动程序。当所需的驱动程序加载完后,会创建一个根设备,然后将根文件系统rootfs以只读的方式挂载。这一步结束后,释放未使用的内存,转换到真正的根文件系统上面去,同时运行/sbin/init程序,执行系统的1号进程。此后系统的控制权就全权交给/sbin/init进程了。
l 初始化系统
经过千辛万苦的跋涉,我们终于接近黎明的曙光了。接下来就是最后一步了:初始化系统。/sbin/init进程是系统其他所有进程的父进程,当它接管了系统的控制权先之后,它首先会去读取/etc/inittab文件来执行相应的脚本进行系统初始化,如设置键盘、字体,装载模块,设置网络等。主要包括以下工作:
1)、执行系统初始化脚本(/etc/rc.d/rc.sysinit),对系统进行基本的配置,以读写方式挂载根文件系统及其它文件系统,到此系统算是基本运行起来了,后面需要进行运行级别的确定及相应服务的启动。rc.sysinit所做的事情(不同的Linux发行版,该文件可能有些差异)如下:
(1)获取网络环境与主机类型。首先会读取网络环境设置文件"/etc/sysconfig/network",获取主机名称与默认网关等网络环境。
(2)测试与载入内存设备/proc及usb设备/sys。除了/proc外,系统会主动检测是否有usb设备,并主动加载usb驱动,尝试载入usb文件系统。
(3)决定是否启动SELinux。
(4)接口设备的检测与即插即用(pnp)参数的测试。
(5)用户自定义模块的加载。用户可以再"/etc/sysconfig/modules/*.modules"加入自定义的模块,此时会加载到系统中。
(6)加载核心的相关设置。按"/etc/sysctl.conf"这个文件的设置值配置功能。
(7)设置系统时间(clock)。
(8)设置终端的控制台的字形。
(9)设置raid及LVM等硬盘功能。
(10)以方式查看检验磁盘文件系统。
(11)进行磁盘配额quota的转换。
(12)重新以读取模式载入系统磁盘。
(13)启动quota功能。
(14)启动系统随机数设备(产生随机数功能)。
(15)清楚启动过程中的临时文件。
(16)将启动信息加载到"/var/log/dmesg"文件中。
当/etc/rc.d/rc.sysinit执行完后,系统就可以顺利工作了,只是还需要启动系统所需要的各种服务,这样主机才可以提供相关的网络和主机功能,因此便会执行下面的脚本。
2)、执行/etc/rc.d/rc脚本。该文件定义了服务启动的顺序是先K后S,而具体的每个运行级别的服务状态是放在/etc/rc.d/rc*.d(*=0~6)目录下,所有的文件均是指向/etc/init.d下相应文件的符号链接。rc.sysinit通过分析/etc/inittab文件来确定系统的启动级别,然后才去执行/etc/rc.d/rc*.d下的文件。
/etc/init.d-> /etc/rc.d/init.d
/etc/rc ->/etc/rc.d/rc
/etc/rc*.d ->/etc/rc.d/rc*.d
/etc/rc.local-> /etc/rc.d/rc.local
/etc/rc.sysinit-> /etc/rc.d/rc.sysinit
也就是说,/etc目录下的init.d、rc、rc*.d、rc.local和rc.sysinit均是指向/etc/rc.d目录下相应文件和文件夹的符号链接。我们以启动级别3为例来简要说明一下。
/etc/rc.d/rc3.d目录,该目录下的内容全部都是以 S 或 K 开头的链接文件,都链接到"/etc/rc.d/init.d"目录下的各种shell脚本。S表示的是启动时需要start的服务内容,K表示关机时需要关闭的服务内容。/etc/rc.d/rc*.d中的系统服务会在系统后台启动,如果要对某个运行级别中的服务进行更具体的定制,通过chkconfig命令来操作,或者通过setup、ntsys、system-config-services来进行定制。如果我们需要自己增加启动的内容,可以在init.d目录中增加相关的shell脚本,然后在rc*.d目录中建立链接文件指向该shell脚本。这些shell脚本的启动或结束顺序是由S或K字母后面的数字决定,数字越小的脚本越先执行。例如,/etc/rc.d/rc3.d /S01sysstat就比/etc/rc.d/rc3.d /S99local先执行。
3)、执行用户自定义引导程序/etc/rc.d/rc.local。其实当执行/etc/rc.d/rc3.d/S99local时,它就是在执行/etc/rc.d/rc.local。S99local是指向rc.local的符号链接。就是一般来说,自定义的程序不需要执行上面所说的繁琐的建立shell增加链接文件的步骤,只需要将命令放在rc.local里面就可以了,这个shell脚本就是保留给用户自定义启动内容的。
4)、完成了系统所有的启动任务后,linux会启动终端或X-Window来等待用户登录。tty1,tty2,tty3...这表示在运行等级1,2,3,4的时候,都会执行"/sbin/mingetty",而且执行了6个,所以linux会有6个纯文本终端,mingetty就是启动终端的命令。
除了这6个之外还会执行"/etc/X11/prefdm-nodaemon"这个主要启动X-Window
至此,系统就启动完毕了。以上分析不到的地方还请各位大虾不吝指正。
关于Linux的其他分析内容下次再继续写。
最后附上一张非常完整的系统启动流程图,适合各个水平阶段的读者。
参考文献:
http://www.cnblogs.com/scnutiger/archive/2009/09/30/1576795.html
http://www.it.com.cn/f/edu/0411/24/51090.htm
http://bbs.chinaunix.net/thread-2046548-1-1.html
http://space.itpub.net/8111049/viewspace-680043
http://dongdiy.blog.51cto.com/1908223/366909
http://icarusli.iteye.com/blog/625755
http://www.54sa.net/?p=549
http://roclinux.cn/?p=1301
arm linux kernel 从入口到start_kernel 的代码分析
转载自:http://bbs.chinaunix.net/thread-2039668-1-1.html
本文针对arm linux, 从kernel的第一条指令开始分析,一直分析到进入start_kernel()函数.
我们当前以linux-2.6.19内核版本作为范例来分析,本文中所有的代码,前面都会加上行号以便于和源码进行对照,
例:
在文件init/main.c中:
00478: asmlinkage void __init start_kernel(void)
前面的"00478:" 表示478行,冒号后面的内容就是源码了.
在分析代码的过程中,我们使用缩进来表示各个代码的调用层次.
由于启动部分有一些代码是平台特定的,虽然大部分的平台所实现的功能都比较类似,但是为了更好的对code进行说明,对于平台相关的代码,我们选择at91(ARM926EJS)平台进行分析.
另外,本文是以uncompressed kernel开始讲解的.对于内核解压缩部分的code,在 arch/arm/boot/compressed中,本文不做讨论.
一. 启动条件
通常从系统上电到执行到linux kenel这部分的任务是由boot loader来完成.
关于boot loader的内容,本文就不做过多介绍.
这里只讨论进入到linux kernel的时候的一些限制条件,这一般是boot loader在最后跳转到kernel之前要完成的:
1. CPU必须处于SVC(supervisor)模式,并且IRQ和FIQ中断都是禁止的;
2. MMU(内存管理单元)必须是关闭的, 此时虚拟地址对物理地址;
3. 数据cache(Data cache)必须是关闭的
4. 指令cache(Instruction cache)可以是打开的,也可以是关闭的,这个没有强制要求;
5. CPU 通用寄存器0 (r0)必须是 0;
6. CPU 通用寄存器1 (r1)必须是 ARM Linux machine type (关于machine type, 我们后面会有讲解)
7. CPU 通用寄存器2 (r2) 必须是 kernel parameter list 的物理地址(parameter list 是由boot loader传递给kernel,用来描述设备信息属性的列表,详细内容可参考"Booting ARM Linux"文档).
二. starting kernel
首先,我们先对几个重要的宏进行说明(我们针对有MMU的情况):
宏 位置 默认值 说明
KERNEL_RAM_ADDR arch/arm/kernel/head.S +26 0xc0008000 kernel在RAM中的的虚拟地址
PAGE_OFFSET include/asm-arm/memeory.h +50 0xc0000000 内核空间的起始虚拟地址
TEXT_OFFSET arch/arm/Makefile +137 0x00008000 内核相对于存储空间的偏移
TEXTADDR arch/arm/kernel/head.S +49 0xc0008000 kernel的起始虚拟地址
PHYS_OFFSET include/asm-arm/arch-xxx/memory.h 平台相关 RAM的起始物理地址
内核的入口是stext,这是在arch/arm/kernel/vmlinux.lds.S中定义的:
00011: ENTRY(stext)
对于vmlinux.lds.S,这是ld script文件,此文件的格式和汇编及C程序都不同,本文不对ld script作过多的介绍,只对内核中用到的内容进行讲解,关于ld的详细内容可以参考ld.info
这里的ENTRY(stext) 表示程序的入口是在符号stext.
而符号stext是在arch/arm/kernel/head.S中定义的:
下面我们将arm linux boot的主要代码列出来进行一个概括的介绍,然后,我们会逐个的进行详细的讲解.
在arch/arm/kernel/head.S中 72 - 94 行,是arm linux boot的主代码:
00072: ENTRY(stext)
00073: msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode
00074: @ and irqs disabled
00075: mrc p15, 0, r9, c0, c0 @ get processor id
00076: bl __lookup_processor_type @ r5=procinfo r9=cpuid
00077: movs r10, r5 @ invalid processor (r5=0)?
00078: beq __error_p @ yes, error 'p'
00079: bl __lookup_machine_type @ r5=machinfo
00080: movs r8, r5 @ invalid machine (r5=0)?
00081: beq __error_a @ yes, error 'a'
00082: bl __create_page_tables
00083:
00084: /*
00085: * The following calls CPU specific code in a position independent
00086: * manner. See arch/arm/mm/proc-*.S for details. r10 = base of
00087: * xxx_proc_info structure selected by __lookup_machine_type
00088: * above. On return, the CPU will be ready for the MMU to be
00089: * turned on, and r0 will hold the CPU control register value.
00090: */
00091: ldr r13, __switch_data @ address to jump to after
00092: @ mmu has been enabled
00093: adr lr, __enable_mmu @ return (PIC) address
00094: add pc, r10, #PROCINFO_INITFUNC
其中,73行是确保kernel运行在SVC模式下,并且IRQ和FIRQ中断已经关闭,这样做是很谨慎的.
arm linux boot的主线可以概括为以下几个步骤:
1. 确定 processor type (75 - 78行)
2. 确定 machine type (79 - 81行)
3. 创建页表 (82行)
4. 调用平台特定的__cpu_flush函数 (在struct proc_info_list中) (94 行)
5. 开启mmu (93行)
6. 切换数据 (91行)
最终跳转到start_kernel (在__switch_data的结束的时候,调用了 b start_kernel)
下面,我们按照这个主线,逐步的分析Code.
1. 确定 processor type
arch/arm/kernel/head.S中:
00075: mrc p15, 0, r9, c0, c0 @ get processor id
00076: bl __lookup_processor_type @ r5=procinfo r9=cpuid
00077: movs r10, r5 @ invalid processor (r5=0)?
00078: beq __error_p @ yes, error 'p'
75行: 通过cp15协处理器的c0寄存器来获得processor id的指令. 关于cp15的详细内容可参考相关的arm手册
76行: 跳转到__lookup_processor_type.在__lookup_processor_type中,会把processor type 存储在r5中
77,78行: 判断r5中的processor type是否是0,如果是0,说明是无效的processor type,跳转到__error_p(出错)
__lookup_processor_type 函数主要是根据从cpu中获得的processor id和系统中的proc_info进行匹配,将匹配到的proc_info_list的基地址存到r5中, 0表示没有找到对应的processor type.
下面我们分析__lookup_processor_type函数
arch/arm/kernel/head-common.S中:
00145: .type __lookup_processor_type, %function
00146: __lookup_processor_type:
00147: adr r3, 3f
00148: ldmda r3, {r5 - r7}
00149: sub r3, r3, r7 @ get offset between virt&phys
00150: add r5, r5, r3 @ convert virt addresses to
00151: add r6, r6, r3 @ physical address space
00152: 1: ldmia r5, {r3, r4} @ value, mask
00153: and r4, r4, r9 @ mask wanted bits
00154: teq r3, r4
00155: beq 2f
00156: add r5, r5, #PROC_INFO_SZ @ sizeof(proc_info_list)
00157: cmp r5, r6
00158: blo 1b
00159: mov r5, #0 @ unknown processor
00160: 2: mov pc, lr
00161:
00162: /*
00163: * This provides a C-API version of the above function.
00164: */
00165: ENTRY(lookup_processor_type)
00166: stmfd sp!, {r4 - r7, r9, lr}
00167: mov r9, r0
00168: bl __lookup_processor_type
00169: mov r0, r5
00170: ldmfd sp!, {r4 - r7, r9, pc}
00171:
00172: /*
00173: * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for
00174: * more information about the __proc_info and __arch_info structures.
00175: */
00176: .long __proc_info_begin
00177: .long __proc_info_end
00178: 3: .long .
00179: .long __arch_info_begin
00180: .long __arch_info_end
145, 146行是函数定义
147行: 取地址指令,这里的3f是向前symbol名称是3的位置,即第178行,将该地址存入r3.
这里需要注意的是,adr指令取址,获得的是基于pc的一个地址,要格外注意,这个地址是3f处的"运行时地址",由于此时MMU还没有打开,也可以理解成物理地址(实地址).(详细内容可参考arm指令手册)
148行: 因为r3中的地址是178行的位置的地址,因而执行完后:
r5存的是176行符号 __proc_info_begin的地址;
r6存的是177行符号 __proc_info_end的地址;
r7存的是3f处的地址.
这里需要注意链接地址和运行时地址的区别. r3存储的是运行时地址(物理地址),而r7中存储的是链接地址(虚拟地址).
__proc_info_begin和__proc_info_end是在arch/arm/kernel/vmlinux.lds.S中:
00031: __proc_info_begin = .;
00032: *(.proc.info.init)
00033: __proc_info_end = .;
这里是声明了两个变量:__proc_info_begin 和 __proc_info_end,其中等号后面的"."是location counter(详细内容请参考ld.info)
这三行的意思是: __proc_info_begin 的位置上,放置所有文件中的 ".proc.info.init" 段的内容,然后紧接着是 __proc_info_end 的位置.
kernel 使用struct proc_info_list来描述processor type.
在 include/asm-arm/procinfo.h 中:
00029: struct proc_info_list {
00030: unsigned int cpu_val;
00031: unsigned int cpu_mask;
00032: unsigned long __cpu_mm_mmu_flags; /* used by head.S */
00033: unsigned long __cpu_io_mmu_flags; /* used by head.S */
00034: unsigned long __cpu_flush; /* used by head.S */
00035: const char *arch_name;
00036: const char *elf_name;
00037: unsigned int elf_hwcap;
00038: const char *cpu_name;
00039: struct processor *proc;
00040: struct cpu_tlb_fns *tlb;
00041: struct cpu_user_fns *user;
00042: struct cpu_cache_fns *cache;
00043: };
我们当前以at91为例,其processor是926的.
在arch/arm/mm/proc-arm926.S 中:
00464: .section ".proc.info.init", #alloc, #execinstr
00465:
00466: .type __arm926_proc_info,#object
00467: __arm926_proc_info:
00468: .long 0x41069260 @ ARM926EJ-S (v5TEJ)
00469: .long 0xff0ffff0
00470: .long PMD_TYPE_SECT | \
00471: PMD_SECT_BUFFERABLE | \
00472: PMD_SECT_CACHEABLE | \
00473: PMD_BIT4 | \
00474: PMD_SECT_AP_WRITE | \
00475: PMD_SECT_AP_READ
00476: .long PMD_TYPE_SECT | \
00477: PMD_BIT4 | \
00478: PMD_SECT_AP_WRITE | \
00479: PMD_SECT_AP_READ
00480: b __arm926_setup
00481: .long cpu_arch_name
00482: .long cpu_elf_name
00483: .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_VFP|HWCAP_EDSP|HWCAP_JAVA
00484: .long cpu_arm926_name
00485: .long arm926_processor_functions
00486: .long v4wbi_tlb_fns
00487: .long v4wb_user_fns
00488: .long arm926_cache_fns
00489: .size __arm926_proc_info, . - __arm926_proc_info
从464行,我们可以看到 __arm926_proc_info 被放到了".proc.info.init"段中.
对照struct proc_info_list,我们可以看到 __cpu_flush的定义是在480行,即__arm926_setup.(我们将在"4. 调用平台特定的__cpu_flush函数"一节中详细分析这部分的内容.)
从以上的内容我们可以看出: r5中的__proc_info_begin是proc_info_list的起始地址, r6中的__proc_info_end是proc_info_list的结束地址.
149行: 从上面的分析我们可以知道r3中存储的是3f处的物理地址,而r7存储的是3f处的虚拟地址,这一行是计算当前程序运行的物理地址和虚拟地址的差值,将其保存到r3中.
150行: 将r5存储的虚拟地址(__proc_info_begin)转换成物理地址
151行: 将r6存储的虚拟地址(__proc_info_end)转换成物理地址
152行: 对照struct proc_info_list,可以得知,这句是将当前proc_info的cpu_val和cpu_mask分别存r3, r4中
153行: r9中存储了processor id(arch/arm/kernel/head.S中的75行),与r4的cpu_mask进行逻辑与操作,得到我们需要的值
154行: 将153行中得到的值与r3中的cpu_val进行比较
155行: 如果相等,说明我们找到了对应的processor type,跳到160行,返回
156行: (如果不相等) , 将r5指向下一个proc_info,
157行: 和r6比较,检查是否到了__proc_info_end.
158行: 如果没有到__proc_info_end,表明还有proc_info配置,返回152行继续查找
159行: 执行到这里,说明所有的proc_info都匹配过了,但是没有找到匹配的,将r5设置成0(unknown processor)
160行: 返回
2. 确定 machine type
arch/arm/kernel/head.S中:
00079: bl __lookup_machine_type @ r5=machinfo
00080: movs r8, r5 @ invalid machine (r5=0)?
00081: beq __error_a @ yes, error 'a'
79行: 跳转到__lookup_machine_type函数,在__lookup_machine_type中,会把struct machine_desc的基地址(machine type)存储在r5中
80,81行: 将r5中的 machine_desc的基地址存储到r8中,并判断r5是否是0,如果是0,说明是无效的machine type,跳转到__error_a(出错)
__lookup_machine_type 函数
下面我们分析__lookup_machine_type 函数:
arch/arm/kernel/head-common.S中:
00176: .long __proc_info_begin
00177: .long __proc_info_end
00178: 3: .long .
00179: .long __arch_info_begin
00180: .long __arch_info_end
00181:
00182: /*
00183: * Lookup machine architecture in the linker-build list of architectures.
00184: * Note that we can't use the absolute addresses for the __arch_info
00185: * lists since we aren't running with the MMU on (and therefore, we are
00186: * not in the correct address space). We have to calculate the offset.
00187: *
00188: * r1 = machine architecture number
00189: * Returns:
00190: * r3, r4, r6 corrupted
00191: * r5 = mach_info pointer in physical address space
00192: */
00193: .type __lookup_machine_type, %function
00194: __lookup_machine_type:
00195: adr r3, 3b
00196: ldmia r3, {r4, r5, r6}
00197: sub r3, r3, r4 @ get offset between virt&phys
00198: add r5, r5, r3 @ convert virt addresses to
00199: add r6, r6, r3 @ physical address space
00200: 1: ldr r3, [r5, #MACHINFO_TYPE] @ get machine type
00201: teq r3, r1 @ matches loader number?
00202: beq 2f @ found
00203: add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc
00204: cmp r5, r6
00205: blo 1b
00206: mov r5, #0 @ unknown machine
00207: 2: mov pc, lr
193, 194行: 函数声明
195行: 取地址指令,这里的3b是向后symbol名称是3的位置,即第178行,将该地址存入r3.
和上面我们对__lookup_processor_type 函数的分析相同,r3中存放的是3b处物理地址.
196行: r3是3b处的地址,因而执行完后:
r4存的是 3b处的地址
r5存的是__arch_info_begin 的地址
r6存的是__arch_info_end 的地址
__arch_info_begin 和 __arch_info_end是在 arch/arm/kernel/vmlinux.lds.S中:
00034: __arch_info_begin = .;
00035: *(.arch.info.init)
00036: __arch_info_end = .;
这里是声明了两个变量:__arch_info_begin 和 __arch_info_end,其中等号后面的"."是location counter(详细内容请参考ld.info)
这三行的意思是: __arch_info_begin 的位置上,放置所有文件中的 ".arch.info.init" 段的内容,然后紧接着是 __arch_info_end 的位置.
kernel 使用struct machine_desc 来描述 machine type.
在 include/asm-arm/mach/arch.h 中:
00017: struct machine_desc {
00018: /*
00019: * Note! The first four elements are used
00020: * by assembler code in head-armv.S
00021: */
00022: unsigned int nr; /* architecture number */
00023: unsigned int phys_io; /* start of physical io */
00024: unsigned int io_pg_offst; /* byte offset for io
00025: * page tabe entry */
00026:
00027: const char *name; /* architecture name */
00028: unsigned long boot_params; /* tagged list */
00029:
00030: unsigned int video_start; /* start of video RAM */
00031: unsigned int video_end; /* end of video RAM */
00032:
00033: unsigned int reserve_lp0 :1; /* never has lp0 */
00034: unsigned int reserve_lp1 :1; /* never has lp1 */
00035: unsigned int reserve_lp2 :1; /* never has lp2 */
00036: unsigned int soft_reboot :1; /* soft reboot */
00037: void (*fixup)(struct machine_desc *,
00038: struct tag *, char **,
00039: struct meminfo *);
00040: void (*map_io)(void);/* IO mapping function */
00041: void (*init_irq)(void);
00042: struct sys_timer *timer; /* system tick timer */
00043: void (*init_machine)(void);
00044: };
00045:
00046: /*
00047: * Set of macros to define architecture features. This is built into
00048: * a table by the linker.
00049: */
00050: #define MACHINE_START(_type,_name) \
00051: static const struct machine_desc __mach_desc_##_type \
00052: __attribute_used__ \
00053: __attribute__((__section__(".arch.info.init")) = { \
00054: .nr = MACH_TYPE_##_type, \
00055: .name = _name,
00056:
00057: #define MACHINE_END \
00058: };
内核中,一般使用宏MACHINE_START来定义machine type.
对于at91, 在 arch/arm/mach-at91rm9200/board-ek.c 中:
00137: MACHINE_START(AT91RM9200EK, "Atmel AT91RM9200-EK"
00138: /* Maintainer: SAN People/Atmel */
00139: .phys_io = AT91_BASE_SYS,
00140: .io_pg_offst = (AT91_VA_BASE_SYS >> 1 & 0xfffc,
00141: .boot_params = AT91_SDRAM_BASE + 0x100,
00142: .timer = &at91rm9200_timer,
00143: .map_io = ek_map_io,
00144: .init_irq = ek_init_irq,
00145: .init_machine = ek_board_init,
00146: MACHINE_END
197行: r3中存储的是3b处的物理地址,而r4中存储的是3b处的虚拟地址,这里计算处物理地址和虚拟地址的差值,保存到r3中
198行: 将r5存储的虚拟地址(__arch_info_begin)转换成物理地址
199行: 将r6存储的虚拟地址(__arch_info_end)转换成物理地址
200行: MACHINFO_TYPE 在 arch/arm/kernel/asm-offset.c 101行定义, 这里是取 struct machine_desc中的nr(architecture number) 到r3中
201行: 将r3中取到的machine type 和 r1中的 machine type(见前面的"启动条件"进行比较
202行: 如果相同,说明找到了对应的machine type,跳转到207行的2f处,此时r5中存储了对应的struct machine_desc的基地址
203行: (不相同), 取下一个machine_desc的地址
204行: 和r6进行比较,检查是否到了__arch_info_end.
205行: 如果不相同,说明还有machine_desc,返回200行继续查找.
206行: 执行到这里,说明所有的machind_desc都查找完了,并且没有找到匹配的, 将r5设置成0(unknown machine).
207行: 返回
3. 创建页表
通过前面的两步,我们已经确定了processor type 和 machine type.
此时,一些特定寄存器的值如下所示:
r8 = machine info (struct machine_desc的基地址)
r9 = cpu id (通过cp15协处理器获得的cpu id)
r10 = procinfo (struct proc_info_list的基地址)
创建页表是通过函数 __create_page_tables 来实现的.
这里,我们使用的是arm的L1主页表,L1主页表也称为段页表(section page table)
L1 主页表将4 GB 的地址空间分成若干个1 MB的段(section),因此L1页表包含4096个页表项(section entry). 每个页表项是32 bits(4 bytes)
因而L1主页表占用 4096 *4 = 16k的内存空间.
对于ARM926,其L1 section entry的格式为可参考arm926EJS TRM):
下面我们来分析 __create_page_tables 函数:
在 arch/arm/kernel/head.S 中:
00206: .type __create_page_tables, %function
00207: __create_page_tables:
00208: pgtbl r4 @ page table address
00209:
00210: /*
00211: * Clear the 16K level 1 swapper page table
00212: */
00213: mov r0, r4
00214: mov r3, #0
00215: add r6, r0, #0x4000
00216: 1: str r3, [r0], #4
00217: str r3, [r0], #4
00218: str r3, [r0], #4
00219: str r3, [r0], #4
00220: teq r0, r6
00221: bne 1b
00222:
00223: ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
00224:
00225: /*
00226: * Create identity mapping for first MB of kernel to
00227: * cater for the MMU enable. This identity mapping
00228: * will be removed by paging_init(). We use our current program
00229: * counter to determine corresponding section base address.
00230: */
00231: mov r6, pc, lsr #20 @ start of kernel section
00232: orr r3, r7, r6, lsl #20 @ flags + kernel base
00233: str r3, [r4, r6, lsl #2] @ identity mapping
00234:
00235: /*
00236: * Now setup the pagetables for our kernel direct
00237: * mapped region.
00238: */
00239: add r0, r4, #(TEXTADDR & 0xff000000) >> 18 @ start of kernel
00240: str r3, [r0, #(TEXTADDR & 0x00f00000) >> 18]!
00241:
00242: ldr r6, =(_end - PAGE_OFFSET - 1) @ r6 = number of sections
00243: mov r6, r6, lsr #20 @ needed for kernel minus 1
00244:
00245: 1: add r3, r3, #1 << 20
00246: str r3, [r0, #4]!
00247: subs r6, r6, #1
00248: bgt 1b
00249:
00250: /*
00251: * Then map first 1MB of ram in case it contains our boot params.
00252: */
00253: add r0, r4, #PAGE_OFFSET >> 18
00254: orr r6, r7, #PHYS_OFFSET
00255: str r6, [r0]
...
00314: mov pc, lr
00315: .ltorg
206, 207行: 函数声明
208行: 通过宏 pgtbl 将r4设置成页表的基地址(物理地址)
宏pgtbl 在 arch/arm/kernel/head.S 中:
00042: .macro pgtbl, rd
00043: ldr \rd, =(__virt_to_phys(KERNEL_RAM_ADDR - 0x4000))
00044: .endm
可以看到,页表是位于 KERNEL_RAM_ADDR 下面 16k 的位置
宏 __virt_to_phys 是在incude/asm-arm/memory.h 中:
00125: #ifndef __virt_to_phys
00126: #define __virt_to_phys(x) ((x) - PAGE_OFFSET + PHYS_OFFSET)
00127: #define __phys_to_virt(x) ((x) - PHYS_OFFSET + PAGE_OFFSET)
00128: #endif
下面从213行 - 221行, 是将这16k 的页表清0.
213行: r0 = r4, 将页表基地址存在r0中
214行: 将 r3 置成0
215行: r6 = 页表基地址 + 16k, 可以看到这是页表的尾地址
216 - 221 行: 循环,从 r0 到 r6 将这16k页表用0填充.
223行: 获得proc_info_list的__cpu_mm_mmu_flags的值,并存储到 r7中. (宏PROCINFO_MM_MMUFLAGS是在arch/arm/kernel/asm-offset.c中定义)
231行: 通过pc值的高12位(右移20位),得到kernel的section,并存储到r6中.因为当前是通过运行时地址得到的kernel的section,因而是物理地址.
232行: r3 = r7 | (r6 << 20); flags + kernel base,得到页表中需要设置的值.
233行: 设置页表: mem[r4 + r6 * 4] = r3
这里,因为页表的每一项是32 bits(4 bytes),所以要乘以4(<<2).
上面这三行,设置了kernel的第一个section(物理地址所在的page entry)的页表项
239, 240行: TEXTADDR是内核的起始虚拟地址(0xc0008000), 这两行是设置kernel起始虚拟地址的页表项(注意,这里设置的页表项和上面的231 - 233行设置的页表项是不同的 )
执行完后,r0指向kernel的第2个section的虚拟地址所在的页表项.
/* TODO: 这两行的code很奇怪,为什么要先取TEXTADDR的高8位(Bit[31:24])0xff000000,然后再取后面的8位(Bit[23:20])0x00f00000*/
242行: 这一行计算kernel镜像的大小(bytes).
_end 是在vmlinux.lds.S中162行定义的,标记kernel的结束位置(虚拟地址):
00158 .bss : {
00159 __bss_start = .; /* BSS */
00160 *(.bss)
00161 *(COMMON)
00162 _end = .;
00163 }
kernel的size = _end - PAGE_OFFSET -1, 这里 减1的原因是因为 _end 是 location counter,它的地址是kernel镜像后面的一个byte的地址.
243行: 地址右移20位,计算出kernel有多少sections,并将结果存到r6中
245 - 248行: 这几行用来填充kernel所有section虚拟地址对应的页表项.
253行: 将r0设置为RAM第一兆虚拟地址的页表项地址(page entry)
254行: r7中存储的是mmu flags, 逻辑或上RAM的起始物理地址,得到RAM第一个MB页表项的值.
255行: 设置RAM的第一个MB虚拟地址的页表.
上面这三行是用来设置RAM中第一兆虚拟地址的页表. 之所以要设置这个页表项的原因是RAM的第一兆内存中可能存储着boot params.
这样,kernel所需要的基本的页表我们都设置完了, 如下图所示:
4. 调用平台特定的 __cpu_flush 函数
当 __create_page_tables 返回之后
此时,一些特定寄存器的值如下所示:
r4 = pgtbl (page table 的物理基地址)
r8 = machine info (struct machine_desc的基地址)
r9 = cpu id (通过cp15协处理器获得的cpu id)
r10 = procinfo (struct proc_info_list的基地址)
在我们需要在开启mmu之前,做一些必须的工作:清除ICache, 清除 DCache, 清除 Writebuffer, 清除TLB等.
这些一般是通过cp15协处理器来实现的,并且是平台相关的. 这就是 __cpu_flush 需要做的工作.
在 arch/arm/kernel/head.S中
00091: ldr r13, __switch_data @ address to jump to after
00092: @ mmu has been enabled
00093: adr lr, __enable_mmu @ return (PIC) address
00094: add pc, r10, #PROCINFO_INITFUNC
第91行: 将r13设置为 __switch_data 的地址
第92行: 将lr设置为 __enable_mmu 的地址
第93行: r10存储的是procinfo的基地址, PROCINFO_INITFUNC是在 arch/arm/kernel/asm-offset.c 中107行定义.
则该行将pc设为 proc_info_list的 __cpu_flush 函数的地址, 即下面跳转到该函数.
在分析 __lookup_processor_type 的时候,我们已经知道,对于 ARM926EJS 来说,其__cpu_flush指向的是函数 __arm926_setup
下面我们来分析函数 __arm926_setup
在 arch/arm/mm/proc-arm926.S 中:
00391: .type __arm926_setup, #function
00392: __arm926_setup:
00393: mov r0, #0
00394: mcr p15, 0, r0, c7, c7 @ invalidate I,D caches on v4
00395: mcr p15, 0, r0, c7, c10, 4 @ drain write buffer on v4
00396: #ifdef CONFIG_MMU
00397: mcr p15, 0, r0, c8, c7 @ invalidate I,D TLBs on v4
00398: #endif
00399:
00400:
00401: #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
00402: mov r0, #4 @ disable write-back on caches explicitly
00403: mcr p15, 7, r0, c15, c0, 0
00404: #endif
00405:
00406: adr r5, arm926_crval
00407: ldmia r5, {r5, r6}
00408: mrc p15, 0, r0, c1, c0 @ get control register v4
00409: bic r0, r0, r5
00410: orr r0, r0, r6
00411: #ifdef CONFIG_CPU_CACHE_ROUND_ROBIN
00412: orr r0, r0, #0x4000 @ .1.. .... .... ....
00413: #endif
00414: mov pc, lr
00415: .size __arm926_setup, . - __arm926_setup
00416:
00417: /*
00418: * R
00419: * .RVI ZFRS BLDP WCAM
00420: * .011 0001 ..11 0101
00421: *
00422: */
00423: .type arm926_crval, #object
00424: arm926_crval:
00425: crval clear=0x00007f3f, mmuset=0x00003135, ucset=0x00001134
第391, 392行: 是函数声明
第393行: 将r0设置为0
第394行: 清除(invalidate)Instruction Cache 和 Data Cache.
第395行: 清除(drain) Write Buffer.
第396 - 398行: 如果有配置了MMU,则需要清除(invalidate)Instruction TLB 和Data TLB
接下来,是对控制寄存器c1进行配置,请参考 ARM926 TRM.
第401 - 404行: 如果配置了Data Cache使用writethrough方式, 需要关掉write-back.
第406行: 取arm926_crval的地址到r5中, arm926_crval 在第424行
第407行: 这里我们需要看一下424和425行,其中用到了宏crval,crval是在 arch/arm/mm/proc-macro.S 中:
00053: .macro crval, clear, mmuset, ucset
00054: #ifdef CONFIG_MMU
00055: .word \clear
00056: .word \mmuset
00057: #else
00058: .word \clear
00059: .word \ucset
00060: #endif
00061: .endm
配合425行,我们可以看出,首先在arm926_crval的地址处存放了clear的值,然后接下来的地址存放了mmuset的值(对于配置了MMU的情况)
所以,在407行中,我们将clear和mmuset的值分别存到了r5, r6中
第408行: 获得控制寄存器c1的值
第409行: 将r0中的 clear (r5) 对应的位都清除掉
第410行: 设置r0中 mmuset (r6) 对应的位
第411 - 413行: 如果配置了使用 round robin方式,需要设置控制寄存器c1的 Bit[16]
第412行: 取lr的值到pc中.
而lr中的值存放的是 __enable_mmu 的地址(arch/arm/kernel/head.S 93行),所以,接下来就是跳转到函数 __enable_mmu
5. 开启mmu
开启mmu是又函数 __enable_mmu 实现的.
在进入 __enable_mmu 的时候, r0中已经存放了控制寄存器c1的一些配置(在上一步中进行的设置), 但是并没有真正的打开mmu,
在 __enable_mmu 中,我们将打开mmu.
此时,一些特定寄存器的值如下所示:
r0 = c1 parameters (用来配置控制寄存器的参数)
r4 = pgtbl (page table 的物理基地址)
r8 = machine info (struct machine_desc的基地址)
r9 = cpu id (通过cp15协处理器获得的cpu id)
r10 = procinfo (struct proc_info_list的基地址)
在 arch/arm/kernel/head.S 中:
00146: .type __enable_mmu, %function
00147: __enable_mmu:
00148: #ifdef CONFIG_ALIGNMENT_TRAP
00149: orr r0, r0, #CR_A
00150: #else
00151: bic r0, r0, #CR_A
00152: #endif
00153: #ifdef CONFIG_CPU_DCACHE_DISABLE
00154: bic r0, r0, #CR_C
00155: #endif
00156: #ifdef CONFIG_CPU_BPREDICT_DISABLE
00157: bic r0, r0, #CR_Z
00158: #endif
00159: #ifdef CONFIG_CPU_ICACHE_DISABLE
00160: bic r0, r0, #CR_I
00161: #endif
00162: mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \
00163: domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \
00164: domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \
00165: domain_val(DOMAIN_IO, DOMAIN_CLIENT))
00166: mcr p15, 0, r5, c3, c0, 0 @ load domain access register
00167: mcr p15, 0, r4, c2, c0, 0 @ load page table pointer
00168: b __turn_mmu_on
00169:
00170: /*
00171: * Enable the MMU. This completely changes the structure of the visible
00172: * memory space. You will not be able to trace execution through this.
00173: * If you have an enquiry about this, *please* check the linux-arm-kernel
00174: * mailing list archives BEFORE sending another post to the list.
00175: *
00176: * r0 = cp#15 control register
00177: * r13 = *virtual* address to jump to upon completion
00178: *
00179: * other registers depend on the function called upon completion
00180: */
00181: .align 5
00182: .type __turn_mmu_on, %function
00183: __turn_mmu_on:
00184: mov r0, r0
00185: mcr p15, 0, r0, c1, c0, 0 @ write control reg
00186: mrc p15, 0, r3, c0, c0, 0 @ read id reg
00187: mov r3, r3
00188: mov r3, r3
00189: mov pc, r13
第146, 147行: 函数声明
第148 - 161行: 根据相应的配置,设置r0中的相应的Bit. (r0 将用来配置控制寄存器c1)
第162 - 165行: 设置 domain 参数r5.(r5 将用来配置domain)
第166行: 配置 domain (详细信息清参考arm相关手册)
第167行: 配置页表在存储器中的位置(set ttb).这里页表的基地址是r4, 通过写cp15的c2寄存器来设置页表基地址.
第168行: 跳转到 __turn_mmu_on. 从名称我们可以猜到,下面是要真正打开mmu了.
(继续向下看,我们会发现,__turn_mmu_on就下当前代码的下方,为什么要跳转一下呢? 这是有原因的. go on)
第169 - 180行: 空行和注释. 这里的注释我们可以看到, r0是cp15控制寄存器的内容, r13存储了完成后需要跳转的虚拟地址(因为完成后mmu已经打开了,都是虚拟地址了).
第181行: .algin 5 这句是cache line对齐. 我们可以看到下面一行就是 __turn_mmu_on, 之所以
第182 - 183行: __turn_mmu_on 的函数声明. 这里我们可以看到, __turn_mmu_on 是紧接着上面第168行的跳转指令的,只是中间在第181行多了一个cache line对齐.
这么做的原因是: 下面我们要进行真正的打开mmu操作了, 我们要把打开mmu的操作放到一个单独的cache line上. 而在之前的"启动条件"一节我们说了,I Cache是可以打开也可以关闭的,这里这么做的原因是要保证在I Cache打开的时候,打开mmu的操作也能正常执行.
第184行: 这是一个空操作,相当于nop. 在arm中,nop操作经常用指令 mov rd, rd 来实现.
注意: 为什么这里要有一个nop,我思考了很长时间,这里是我的猜测,可能不是正确的:
因为之前设置了页表基地址(set ttb),到下一行(185行)打开mmu操作,中间的指令序列是这样的:
set ttb(第167行)
branch(第168行)
nop(第184行)
enable mmu(第185行)
对于arm的五级流水线: fetch - decode - execute - memory - write
他们执行的情况如下图所示:
这里需要说明的是,branch操作会在3个cycle中完成,并且会导致重新取指.
从这个图我们可以看出来,在enable mmu操作取指的时候, set ttb操作刚好完成.
第185行: 写cp15的控制寄存器c1, 这里是打开mmu的操作,同时会打开cache等(根据r0相应的配置)
第186行: 读取id寄存器.
第187 - 188行: 两个nop.
第189行: 取r13到pc中,我们前面已经看到了, r13中存储的是 __switch_data (在 arch/arm/kernel/head.S 91行),下面会跳到 __switch_data.
第187,188行的两个nop是非常重要的,因为在185行打开mmu操作之后,要等到3个cycle之后才会生效,这和arm的流水线有关系.
因而,在打开mmu操作之后的加了两个nop操作.
6. 切换数据
在 arch/arm/kernel/head-common.S 中:
00014: .type __switch_data, %object
00015: __switch_data:
00016: .long __mmap_switched
00017: .long __data_loc @ r4
00018: .long __data_start @ r5
00019: .long __bss_start @ r6
00020: .long _end @ r7
00021: .long processor_id @ r4
00022: .long __machine_arch_type @ r5
00023: .long cr_alignment @ r6
00024: .long init_thread_union + THREAD_START_SP @ sp
00025:
00026: /*
00027: * The following fragment of code is executed with the MMU on in MMU mode,
00028: * and uses absolute addresses; this is not position independent.
00029: *
00030: * r0 = cp#15 control register
00031: * r1 = machine ID
00032: * r9 = processor ID
00033: */
00034: .type __mmap_switched, %function
00035: __mmap_switched:
00036: adr r3, __switch_data + 4
00037:
00038: ldmia r3!, {r4, r5, r6, r7}
00039: cmp r4, r5 @ Copy data segment if needed
00040: 1: cmpne r5, r6
00041: ldrne fp, [r4], #4
00042: strne fp, [r5], #4
00043: bne 1b
00044:
00045: mov fp, #0 @ Clear BSS (and zero fp)
00046: 1: cmp r6, r7
00047: strcc fp, [r6],#4
00048: bcc 1b
00049:
00050: ldmia r3, {r4, r5, r6, sp}
00051: str r9, [r4] @ Save processor ID
00052: str r1, [r5] @ Save machine type
00053: bic r4, r0, #CR_A @ Clear 'A' bit
00054: stmia r6, {r0, r4} @ Save control register values
00055: b start_kernel
第14, 15行: 函数声明
第16 - 24行: 定义了一些地址,例如第16行存储的是 __mmap_switched 的地址, 第17行存储的是 __data_loc 的地址 ......
第34, 35行: 函数 __mmap_switched
第36行: 取 __switch_data + 4的地址到r3. 从上文可以看到这个地址就是第17行的地址.
第37行: 依次取出从第17行到第20行的地址,存储到r4, r5, r6, r7 中. 并且累加r3的值.当执行完后, r3指向了第21行的位置.
对照上文,我们可以得知:
r4 - __data_loc
r5 - __data_start
r6 - __bss_start
r7 - _end
这几个符号都是在 arch/arm/kernel/vmlinux.lds.S 中定义的变量:
00102: #ifdef CONFIG_XIP_KERNEL
00103: __data_loc = ALIGN(4); /* location in binary */
00104: . = PAGE_OFFSET + TEXT_OFFSET;
00105: #else
00106: . = ALIGN(THREAD_SIZE);
00107: __data_loc = .;
00108: #endif
00109:
00110: .data : AT(__data_loc) {
00111: __data_start = .; /* address in memory */
00112:
00113: /*
00114: * first, the init task union, aligned
00115: * to an 8192 byte boundary.
00116: */
00117: *(.init.task)
......
00158: .bss : {
00159: __bss_start = .; /* BSS */
00160: *(.bss)
00161: *(COMMON)
00162: _end = .;
00163: }
对于这四个变量,我们简单的介绍一下:
__data_loc 是数据存放的位置
__data_start 是数据开始的位置
__bss_start 是bss开始的位置
_end 是bss结束的位置, 也是内核结束的位置
其中对第110行的指令讲解一下: 这里定义了.data 段,后面的AT(__data_loc) 的意思是这部分的内容是在__data_loc中存储的(要注意,储存的位置和链接的位置是可以不相同的).
关于 AT 详细的信息请参考 ld.info
第38行: 比较 __data_loc 和 __data_start
第39 - 43行: 这几行是判断数据存储的位置和数据的开始的位置是否相等,如果不相等,则需要搬运数据,从 __data_loc 将数据搬到 __data_start.
其中 __bss_start 是bss的开始的位置,也标志了 data 结束的位置,因而用其作为判断数据是否搬运完成.
第45 - 48行: 是清除 bss 段的内容,将其都置成0. 这里使用 _end 来判断 bss 的结束位置.
第50行: 因为在第38行的时候,r3被更新到指向第21行的位置.因而这里取得r4, r5, r6, sp的值分别是:
r4 - processor_id
r5 - __machine_arch_type
r6 - cr_alignment
sp - init_thread_union + THREAD_START_SP
processor_id 和 __machine_arch_type 这两个变量是在 arch/arm/kernel/setup.c 中 第62, 63行中定义的.
cr_alignment 是在 arch/arm/kernel/entry-armv.S 中定义的:
00182: .globl cr_alignment
00183: .globl cr_no_alignment
00184: cr_alignment:
00185: .space 4
00186: cr_no_alignment:
00187: .space 4
init_thread_union 是 init进程的基地址. 在 arch/arm/kernel/init_task.c 中:
00033: union thread_union init_thread_union
00034: __attribute__((__section__(".init.task"))) =
00035: { INIT_THREAD_INFO(init_task) };
对照 vmlnux.lds.S 中的 的117行,我们可以知道init task是存放在 .data 段的开始8k, 并且是THREAD_SIZE(8k)对齐的
第51行: 将r9中存放的 processor id (在arch/arm/kernel/head.S 75行) 赋值给变量 processor_id
第52行: 将r1中存放的 machine id (见"启动条件"一节)赋值给变量 __machine_arch_type
第53行: 清除r0中的 CR_A 位并将值存到r4中. CR_A 是在 include/asm-arm/system.h 21行定义, 是cp15控制寄存器c1的Bit[1](alignment fault enable/disable)
第54行: 这一行是存储控制寄存器的值.
从上面 arch/arm/kernel/entry-armv.S 的代码我们可以得知.
这一句是将r0存储到了 cr_alignment 中,将r4存储到了 cr_no_alignment 中.
第55行: 最终跳转到start_kernel