买卖股票的最佳时机 IV

买卖股票的最佳时机 IV

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:

输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

0 <= k <= 100
0 <= prices.length <= 1000
0 <= prices[i] <= 1000

解题思路:
动态规划:
本题的思路和买卖股票的最佳时机 III一致,可以参考我的另一篇文章:买卖股票的最佳时机 III
使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]
j的状态表示为:

0 表示不操作
1 第一次买入
2 第一次卖出
3 第二次买入
4 第二次卖出

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入。
题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票。
达到dp[i][1]状态,有两个具体操作:
操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:
操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可以类比剩下的状态

class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices == null || prices.length == 0) {return 0;}
        int[][] dp = new int[prices.length][2 * k + 1];
        for (int i = 1; i < 2 * k; i += 2) {
            dp[0][i] = -prices[0];
        }
        for (int i = 1; i < prices.length; i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.length - 1][2 * k];
    }
}

你可能感兴趣的:(LeetCode,算法题,算法,动态规划,leetcode,java,数据结构)