算法(四)--二分法,动态规划

二分法

前提:

  • 有序
  • 上下界
  • 可以通过索引访问

模板:

left,right = 0,len(array)-1
while left <= right:
    mid = (left+right)/2
    if array[mid] == target:
        break or return result
    elseif array[mid] < target:
    left = mid+1
  else:
    right = mid-1

剑指 Offer II 072. 求平方根

该题也可以用牛顿迭代法解题

func mySqrt(x int) int {
    if x == 0 {
        return 0
    }
    left,right := 0,x
    for ;left <= right; {
      mid := (left+right)/2  //这里怕整形溢出的话,可以用: mid := left + (right-left)/2
        rs := mid*mid
        if rs == x {
            return mid
        }else if(rs < x){
            left = mid + 1
        }else{
            right = mid - 1
        }
    }
    return right
}
//牛顿迭代法

367. 有效的完全平方数

func isPerfectSquare(num int) bool {
    left,right := 0,num
    for ;left <= right; {
        mid := (left+right)/2
        if mid*mid == num {
            return true
        }else if mid*mid < num {
            left = mid + 1
        }else{
            right = mid - 1
        }
    }
    return false
}

33. 搜索旋转排序数组

func search(nums []int, target int) int {
    left, right := 0, len(nums)-1
    for left <= right {
        mid := (right - left) / 2 + left
        if nums[mid] == target {
            return mid
        }
        if nums[mid] >= nums[left] {
            if nums[mid] > target && target >= nums[left] {
                right = mid - 1
            } else {
                left = mid + 1
            }
        } else {
            if nums[mid] < target && target <= nums[right] {
                left = mid + 1
            } else {
                right = mid - 1
            }
        }
    }
    return -1
}

74. 搜索二维矩阵

func searchMatrix(matrix [][]int, target int) bool {
    m := len(matrix)
    if m == 0 {
        return false
    }
    n := len(matrix[0])
    for i := 0;i < m;i++ {
        if target > matrix[i][n-1] {
            continue
        }
        left,right := 0,n-1
        for ;left <= right; {
            mid := left + (right-left)/2
            if matrix[i][mid] == target {
                return true
            }
            if matrix[i][mid] < target {
                left = mid + 1
            }else{
                right = mid - 1
            }
        }
    }
    return false
}

动态规划

动态规划和递归,分治没有本质区别

共性:找到重复子问题

区别:是否有最优解

62. 不同路径

func uniquePaths(m int, n int) int {
    dp := make([][]int, m)
    for i := range dp {
        dp[i] = make([]int, n)
        dp[i][0] = 1
    }
    for j := 0; j < n; j++ {
        dp[0][j] = 1
    }
    for i := 1; i < m; i++ {
        for j := 1; j < n; j++ {
            dp[i][j] = dp[i-1][j] + dp[i][j-1]
        }
    }
    return dp[m-1][n-1]
}
//空间优化版本:
func uniquePaths(m int, n int) int {
    cur := make([]int,n)
    for i :=0;i

63. 不同路径 II

func uniquePathsWithObstacles(obstacleGrid [][]int) int {
    n, m := len(obstacleGrid), len(obstacleGrid[0])
    f := make([]int, m)
    if obstacleGrid[0][0] == 0 {
        f[0] = 1
    }
    for i := 0; i < n; i++ {
        for j := 0; j < m; j++ {
            if obstacleGrid[i][j] == 1 {
                f[j] = 0
                continue
            }
            if j - 1 >= 0 && obstacleGrid[i][j-1] == 0 {
                f[j] += f[j-1]
            }
        }
    }
    return f[len(f)-1]
}

1143. 最长公共子序列

//DP方程
if s1[-1] != s2[-1]
    LCS(s1,s2) = MAX(LCS(s1-1,s2),LCS(s1,s2-1))
if s1[-1] == s2[-1]
    LCS[s1,s2] = LCS(s1-1,s2-1) + 1
//代码:
func longestCommonSubsequence(text1, text2 string) int {
    m, n := len(text1), len(text2)
    dp := make([][]int, m+1)
    for i := range dp {
        dp[i] = make([]int, n+1)
    }
    for i, c1 := range text1 {
        for j, c2 := range text2 {
            if c1 == c2 {
                dp[i+1][j+1] = dp[i][j] + 1
            } else {
                dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j])
            }
        }
    }
    return dp[m][n]
}

func max(a, b int) int {
    if a > b {
        return a
    }
    return b
}

120. 三角形最小路径和

func minimumTotal(triangle [][]int) int {
    dp := triangle
    for i := len(triangle)-2;i >= 0;i-- {
        for j := len(triangle[i])-1;j >= 0;j-- {
            dp[i][j] += Min(dp[i+1][j],dp[i+1][j+1])
        }
    }
    return dp[0][0]
}

func Min(a,b int) int {
    if a > b {
        return b
    }
    return a
}

53. 最大子数组和

//DP方程
f(i) = Max(f(i-1),0) + a[i]

func maxSubArray(nums []int) int {
    if len(nums) == 1 {
        return nums[0]
    }
    max := nums[0]
    for i := 1;i < len(nums);i++ {
        nums[i] = Max(nums[i],nums[i]+nums[i-1])
        max = Max(nums[i],max)
    }
    return max
}

func Max(a,b int) int {
    if a > b {
        return a
    }
    return b
}

152. 乘积最大子数组

func maxProduct(nums []int) int {
    maxF, minF, ans := nums[0], nums[0], nums[0]
    for i := 1; i < len(nums); i++ {
        mx, mn := maxF, minF
        maxF = Max(mx * nums[i], Max(nums[i], mn * nums[i]))
        minF = Min(mn * nums[i], Min(nums[i], mx * nums[i]))
        ans = Max(maxF, ans)
    }
    return ans
}

func Max(a,b int) int {
    if a > b {
        return a
    }
    return b
}

func Min(a,b int) int {
    if a < b {
        return a
    }
    return b
}

322. 零钱兑换

//DP
func coinChange(coins []int, amount int) int {
    dp := make([]int, amount+1)
    dp[0] = 0
    for j := 1; j <= amount; j++ {
        dp[j] = math.MaxInt32
        for i := 0; i < len(coins); i++ {
            if j >= coins[i] && dp[j-coins[i]] != math.MaxInt32 {
                dp[j] = min(dp[j], dp[j-coins[i]]+1)
            }
        }
    }
    if dp[amount] == math.MaxInt32 {
        return -1
    }
    return dp[amount]
}

func min(a, b int) int {
    if a < b {
        return a
    }
    return b
}

198. 打家劫舍

func rob(nums []int) int {
    n := len(nums)
    if n == 0 {
        return 0
    }
    a := make([][]int,n)
    for i,_ := range a {
        a[i] = make([]int,2)
    }
    a[0][0] = 0
    a[0][1] = nums[0]
    for j := 1;j < n;j++ {
        a[j][0] = Max(a[j-1][0],a[j-1][1])
        a[j][1] = a[j-1][0] + nums[j]
    }
    return Max(a[n-1][0],a[n-1][1])
}

func Max(a,b int) int {
    if a > b {
        return a
    }
    return b
}

你可能感兴趣的:(算法(四)--二分法,动态规划)