- RTX 3090图形处理巅峰性能解析
智能计算研究中心
其他
内容概要作为NVIDIA面向专业创作者与发烧级玩家的旗舰产品,RTX3090重新定义了图形处理的性能边界。本文将以Ampere架构的技术演进为切入点,系统性解构该显卡在显存配置、运算单元协作及图像处理技术方面的创新设计。通过对比测试数据与工程原理分析,重点探讨24GBGDDR6X显存在8K分辨率场景下的带宽利用率,以及10496个CUDA核心在光线追踪与深度学习超采样(DLSS)任务中的动态负载分
- H100显卡全面评测与性能解析
智能计算研究中心
其他
内容概要在本篇评测中,我们将围绕H100显卡展开全面的分析。首先,我们将对H100显卡的技术规格进行细致剖析,帮助读者了解其构造及功能。紧接着,我们将深入评估这款显卡在游戏性能上的表现,包括帧率、延迟等关键指标,以及在不同类型游戏中的表现差异。此外,我们还将对其图形处理能力进行深度分析,探讨H100在图像渲染、视频编辑等方面的实际应用效果。同时,AI计算领域是当前技术发展的热点,我们会评估H100
- Ascend Extension for PyTorch是个what?
机器学习人工智能深度学习
1AscendExtensionforPyTorchAscendExtensionforPyTorch插件是基于昇腾的深度学习适配框架,使昇腾NPU可以支持PyTorch框架,为PyTorch框架的使用者提供昇腾AI处理器的超强算力。项目源码地址请参见Ascend/Pytorch。昇腾为基于昇腾处理器和软件的行业应用及服务提供全栈AI计算基础设施。您可以通过访问昇腾社区,了解关于昇腾的更多信息。2
- 神经网络与深度学习入门:理解ANN、CNN和RNN
shandianfk_com
ChatGPTAI神经网络深度学习cnn
在现代科技日新月异的今天,人工智能已经成为了我们生活中的重要组成部分。无论是智能手机的语音助手,还是推荐系统,背后都有一项核心技术在支撑,那就是神经网络与深度学习。今天,我们就来聊一聊这个听起来高大上的话题,其实它也没那么难懂!什么是神经网络?首先,我们要了解什么是神经网络。神经网络(ArtificialNeuralNetwork,简称ANN)是模拟人脑神经元连接方式的一种算法。它由一层层的“神经
- 【C#语言】Unity引擎
计算机学长
C#c#开发语言
引言在当今的游戏开发领域,C#语言与Unity引擎犹如一对黄金搭档,携手塑造了无数令人瞩目的游戏作品。C#作为一种简洁、类型安全且面向对象的编程语言,以其强大的功能和易于学习的特性,深受开发者喜爱。而Unity引擎,凭借其跨平台性、丰富的资源和强大的图形渲染能力,成为了游戏开发的首选平台之一。无论是小型独立游戏的灵动创意,还是大型3A游戏的震撼呈现,都能看到C#语言与Unity引擎的身影。它们的结
- 44、深度学习-自学之路-自己搭建深度学习框架-6、自动优化,就是把原来的权重更新的部分用面向对象的方式再写一次
小宇爱
深度学习-自学之路深度学习人工智能
importnumpyasnpnp.random.seed(1)data=np.array([[0,0],[0,1],[1,0],[1,1]])target=np.array([[0],[1],[0],[1]])#weights_0_1=np.random.rand(2,3)#weights_1_2=np.random.rand(3,1)weights_0_1=np.array([[0.1,0.2
- Python的PyTorch+CNN深度学习技术在人脸识别项目中的应用
mosquito_lover1
python深度学习pytorchcnn
人脸识别技术是一种基于人脸特征进行身份识别的生物识别技术,其核心原理包括人脸检测、人脸对齐、特征提取、特征匹配、身份识别。一、应用场景安防:门禁、监控。金融:刷脸支付、身份验证。社交:自动标注、美颜。医疗:患者身份确认、情绪分析。二、关键技术深度学习:CNN在人脸检测、特征提取中表现优异。大数据:大规模数据集(如LFW、MegaFace)提升模型泛化能力。硬件加速:GPU、TPU等加速计算,提升实
- 深度学习与搜索引擎优化的结合:DeepSeek的创新与探索
m0_74825634
面试学习路线阿里巴巴深度学习搜索引擎人工智能
目录引言1.传统搜索引擎的局限性2.深度学习在搜索引擎中的作用3.DeepSeek实现搜索引擎优化的关键技术3.1神经网络与搜索引擎优化3.2自然语言处理与查询理解3.3深度强化学习与搜索结果排序4.DeepSeek的深度学习架构4.1?查询解析与语义理解4.2?搜索排名与相关性排序4.3?个性化推荐与用户行为分析5、总结引言随着人工智能(AI)技术的迅速发展,深度学习(DeepLearning)
- 第12章 服务端渲染(SSR)深度解析
道不尽世间的沧桑
vue深入理解前端javascriptvue.js开发语言
12.1SSR核心价值详解12.1.1与传统SPA的对比分析步骤步骤客户端渲染CSR1.下载空HTML2.下载JS文件3.执行JS渲染页面服务端渲染SSR1.服务端生成完整HTML2.立即展示内容3.下载JS进行混合核心优势对比表:特性CSRSSR首屏时间依赖JS下载执行(慢)立即展示HTML(快)SEO支持需动态渲染(可能不被抓取)完整HTML(SEO友好)服务器负载低(纯静态资源)高(需实时渲
- IDEA安装包(绿色版) IntelliJ全家桶(Min,Mac,Linux)
吃汤圆的抹香鲸
intellij-ideajavaideidea
目录一、核心价值定位1.1开发者选择逻辑1.2竞品对比优势二、环境配置规范2.1硬件基准要求2.2多版本管理方案三、效率革命性功能3.1智能编码体系3.2重构安全机制四、企业级开发适配4.1SpringBoot深度支持4.2微服务调试方案五、质量保障体系5.1静态检测配置5.2代码审查流程六、学习路径规划6.130天成长路线下载链接:https://pan.baidu.com/s/1cfkJf6Z
- DeepSeek:基于大模型的任务管理系统
klzsr
人工智能deepseek
最近使用大模型,本地的DeepseekR1:14b,进行开发。发现每次处理的任务量都比较有限。而且还有错误的情况出现。于是考虑有没有必要基于大模型制作一个任务系统。用户给出需求,通过多轮任务请求大模型。类似分页的功能。实现分层,分步的任务监督管理系统。一下是Deepseek的回答已深度思考(用时34秒)嗯,用户问有没有必要基于大模型做一个任务系统,让用户通过多轮请求来完成需求,类似分页的分层任务管
- 深度学习笔记——常见的Transformer位置编码
好评笔记
深度学习笔记深度学习transformer人工智能
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍3种常见的Transformer位置编码——正弦/余弦位置编码(sin/cos)、基于频率的二维位置编码(2DFrequencyEmbeddings)、旋转式位置编码(RoPE)文章目录Transformer中常见的编码方式正弦/余弦位置编码(SinusoidalPositionalEncoding)基于频率的
- 深度学习面试八股文——决战金三银四
Good Note
补档深度学习面试人工智能机器学习AIGC校招春招
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记的任务是解读深度学习实践/面试过程中可能会用到的知识点,内容通俗易懂,入门、实习和校招轻松搞定。公主号合集地址点击进入优惠地址:深度学习笔记合集笔记介绍本笔记的任务是解读深度学习实践/面试过程中可能会用到的知识点,内容通俗易懂,入门、实习和校招轻松搞定。涵盖深度学习八股文和常用算法、模型,包括深度学习基础知识,前向传
- 深度学习入门篇--来瞻仰卷积神经网络的鼻祖LeNet
智算学术
深度学习图像分类篇深度学习
B站视频讲解:深度学习入门篇:使用pytorch搭建LeNet网络并代码详解实战前言大家在学习神经网络的时候肯定会有这样的感受,有很多的文章和视频,有的文章也很好,但是总是不成体系,总是学起来东一榔锤,西一棒槌的,在这种情况下,我会给大家更新深度学习系列的技术文章,轮椅级持续更新技术干货,别问为什么是轮椅级,因为保姆级已经过时了!前置基础知识储备:python/pytorch/神经网络基础知识概念
- 轻量级网络设计原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
轻量级网络设计原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,神经网络模型变得越来越庞大和复杂。然而,大规模模型在计算资源、存储空间以及推理速度方面提出了更高的要求,这在移动设备、嵌入式系统等资源受限的环境中尤为明显。为了解决这一问题,轻量级网络设计应运而生。1.2研
- C#语言的主要特性和用途。
huacheng168
c#
你描述的非常准确。以下是C#语言的一些主要特点和特性:基于.NET平台:C#是一种基于.NET平台的开发语言,它能够利用.NET框架提供的大量类库和功能,这使得C#在开发各种类型的应用时具有很高的效率。多平台支持:C#语言本身可以在多个平台上运行,包括Windows、Linux和MacOS等操作系统。这使得C#具有很好的跨平台兼容性。简洁易学的语法:C#的语法设计得非常清晰和易学,它借鉴了多种语言
- HarmonyOS Next智能相册应用中的AI识图与语音识别实战
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)构建智能相册应用中AI识图与语音识别技术的实战应用,基于实际开发经验进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、智能相册应用需求与架构设计(一)功能需求深度剖析图像分类需求在智能相册应用中,图像分类是一项重要功能,
- C#OPC(下)
C6666888
C#专栏c#开发语言
安装OPCUASDK通过NuGet包管理器,在VisualStudio中右键单击项目名称,选择“管理NuGet程序包”,在搜索框中输入“OPCFoundation.NetStandard.Opc.Ua”,找到对应的OPCUASDK包后点击“安装”,将其集成到C#项目中。它和OPC安装流程一样。配置OPCUA客户端应用程序创建一个ApplicationConfiguration对象,用于配置OPCU
- ATB概念之:算子tiling
人工智能深度学习
1什么是算子tiling在计算机科学和深度学习领域,算子tiling(有时也被称作操作符tiling或者循环tiling)是一种优化技术,主要用于提高计算效率,尤其是在处理大规模张量运算时。Tiling技术通常用于将大的计算任务分解成更小的块,这些小块可以在内存中更高效地处理,或者更适合并行计算环境。在深度学习框架中,算子tiling可以应用于不同的场景:内存优化:通过将大的张量切分成更小的部分,
- 2025预测趋势:AI知识库工具挑选指南
知识库知识库管理知识库软件
随着人工智能技术的飞速发展,AI知识库工具已成为企业和个人管理知识资产的重要手段。本文将探讨2025年AI知识库工具的预测趋势,并推荐六款精选工具,帮助用户挑选最适合的AI知识库解决方案。1.AI知识库的智能化:趋势预计到2025年,AI知识库工具将更加智能化,通过深度学习和自然语言处理技术,实现更精准的语义搜索和智能问答功能。这些工具将能够理解用户的查询意图,提供更准确和相关的信息。2.实时自动
- 2024年Web前端最新vue动态路由缓存【前进刷新、后退缓存】,2024历年华为跳动前端面试真题解析
2401_84418948
程序员前端面试学习
总结大厂面试问深度,小厂面试问广度,如果有同学想进大厂深造一定要有一个方向精通的惊艳到面试官,还要平时遇到问题后思考一下问题的本质,找方法解决是一个方面,看到问题本质是另一个方面。还有大家一定要有目标,我在很久之前就想着以后一定要去大厂,然后默默努力,每天看一些大佬们的文章,总是觉得只有再学深入一点才有机会,所以才有恒心一直学下去。开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最
- Redis知识深度总结文档
jay丿
redis数据库缓存
Redis知识深度总结文档一、Redis简介与基础概念Redis(RemoteDictionaryServer)是一个开源的高性能键值对存储数据库,由SalvatoreSanfilippo(网名antirez)在2009年创建。它以内存中的数据结构存储为基础,提供了多种高级功能,使得Redis不仅是一个简单的键值存储系统,更是一个功能丰富的数据结构服务器。Redis的数据存储在内存中,因此它的读写
- Python 进阶特性深度解析:从语法糖到内存管理的统一视角
Neo Evolution
Pythonpythonwindows开发语言算法数据结构
生成式(推导式)的用法与内存效率分析Python的推导式不仅仅是语法糖,它们在内存管理和性能方面有着深刻的影响。理解推导式的工作原理,有助于我们写出更高效的代码。推导式的内存模型分析列表推导式在CPython解释器中的实现实际上比等价的for循环更为高效:#列表推导式的内存分配模式squares_list=[x**2forxinrange(1000)]#等价for循环的内存分配模式squares_
- 大模型学习完整路径(一站式汇总),从零基础到精通!新手友好级指南
Python程序员罗宾
学习语言模型知识图谱人工智能数据库java
如果读者朋友不想深入学习大模型,则了解提示词的使用原则也可以了。要是既不想深入学习,又要做大模型相关的项目,则对于工程同学来说,学习RAG也能把大模型玩转起来。前排提示,文末有大模型AGI-CSDN独家资料包哦!先来一张整体结构图,越是下面部分,越是基础:可以按以下步骤学习:1.理解基础概念需要了解深度学习的基本原理和常见术语,如神经网络、梯度下降、反向传播、监督学习、无监督学习、分类、回归、聚类
- 【实用指南】如何用 ChatGPT 完成严谨的论文论证与数据分析
学境思源AcademicIdeas
ChatGPT学境思源AI写作chatgpt数据分析人工智能
在学术论文写作中,论证与数据分析是支撑论文主张和结论的核心部分。ChatGPT不仅可以帮助你构建严谨的逻辑框架,还能提供有效的支持材料,优化数据分析过程,提升论文的质量和深度。今天分享的内容将为大家介绍如何通过ChatGPT完成论文中的论证与数据分析的具体方法和技巧。一、如何完成论文论证1.确定论点和假设在论文的论证部分,首先需要明确你的核心论点和假设。可以通过与ChatGPT的对话,进一步理清自
- c#中的PelcoD云台控制
我在北京coding
c#开发语言
在IT行业中,云台控制是视频监控系统中的一个重要组成部分,特别是在使用远程监控摄像头时。PelcoD协议是一种广泛用于控制云台和摄像机运动的工业标准,尤其在安防监控领域。本文将深入探讨如何使用C#语言实现PelcoD协议进行云台控制。一、PelcoD协议介绍PelcoD协议是一种串行通信协议,主要用于控制云台的上、下、左、右移动,缩放、聚焦、光圈调整等功能。该协议基于RS-485或RS-232通信
- 2025年计算机工程与3D技术国际会议(ICCEDT 2025)
s_academic
理科会议3d计算机网络
2025年计算机工程与3D技术国际会议(ICCEDT2025)2025InternationalConferenceonComputerEngineeringand3DTechnology会议将聚焦计算机工程与3D技术在各个领域的深度融合与创新应用。在主题演讲环节,行业领军人物将分享他们对未来发展的前瞻性见解,探讨如何利用3D技术为计算机工程领域带来新的突破和机遇。如在人工智能与3D技术的结合方面
- 模型蒸馏:让 AI 模型 “轻装上阵”,开启无限可能
东锋1.3
人工智能人工智能模型蒸馏
模型蒸馏:让AI模型“轻装上阵”,开启无限可能在当今AI技术蓬勃发展的时代,大模型宛如一位无所不能的“超级智者”,深度融入到我们生活的每一个角落。无论是手机上精准的语音助手,还是购物平台个性化的推荐系统,又或是医疗领域辅助诊断的智能工具,大模型都展现出了令人惊叹的能力。然而,这位“超级智者”却有着不为人知的烦恼。随着应用场景不断拓展,它在运行效率和资源消耗方面的局限性逐渐暴露出来。就像一个体型庞大
- unity引擎中的渲染实现细节
你一身傲骨怎能输
商业化游戏开发技术专栏unity游戏引擎
在Unity引擎中,渲染实现细节涉及多个层面,包括但不限于材质处理、光照计算、阴影渲染、后处理效果等。下面我将提供一个简化的示例,模拟Unity中的一个基本的渲染流程,特别是在处理光照和材质方面的代码实现。这个示例将使用C#语言,因为Unity主要使用C#进行开发。示例:基础光照和材质渲染在Unity中,渲染通常是通过Shader和C#脚本来控制的。以下是一个简化的Shader和C#脚本,用于实现
- 实战技巧:如何快速提高网站收录的权威性?
百度网站快速收录
百度网站快速收录百度快速收录网站快速收录百度收录网站收录
快速提高网站收录的权威性是一个系统性的工作,涉及内容质量、网站结构、外部链接、用户体验等多个方面。以下是一些实战技巧,可以帮助你快速提升网站收录的权威性:一、提升内容质量原创性:确保网站内容具备高质量与原创性,这是满足搜索引擎对独特且有价值内容偏好的关键。原创内容不仅能吸引用户的关注,还能让搜索引擎更加青睐,从而提高网站的排名和权威性。深度与广度:内容要有深度,能够为用户提供实际帮助和解决方案。同
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分