由于本人打算使用Assimp来加载模型,这里记录一下tinyobjloader库的使用。之前也研究过fbxsdk,除了骨骼动画暂未读取外,代码自认为还算可靠。
tinyobjloader地址:
https://github.com/tinyobjloader/tinyobjloader
而tinyobjloader库只有一个头文件,可以很方便的读取obj文件。支持材质,不过不支持骨骼动画,vulkan官方教程便是使用的它。不过没有骨骼动画还是有很大的局限性,这里只是分享一下怎么读取材质和拆分网格。
我抽象了一个ModelObject类表示模型数据,而一个ModelObject包含多个Sub模型,每个Sub模型使用同一材质(有的人称为图元Primitive或DrawCall)。最后我将其保存为文件,这样我的引擎便可直接解析ModelObject文件,而不是再去读obj、fbx等其他文件了。
这一节可以跳过,下一节是真正使用tinyobjloader库。
//一个文件会有多个ModelObject,一个ModelObject根据材质分为多个ModelSub
//注意ModelSub为一个材质,需要读取时合并网格
class ModelObject
{
friend class VK;
public:
//从源文件加载模型
static vector Create(string_view path_name);
void Load(string_view path_name);
//保存到文件
void SaveToFile(string_view path_name);
private:
vector _allSub; //下标减1 为材质,0为没有材质
vector _allVertex;//顶点缓存
vector _allIndex;//索引缓存
vector _allMaterial;//所有材质
//------------------不同格式加载实现--------------------------------
//obj
static vector _load_obj(string_view path_name);
static vector _load_obj_2(string_view path_name);
};
ModelObjectSub只是表示在索引缓存的一段范围:
//模型三角形范围
struct ModelTriangleRange
{
ModelTriangleRange() :
_countTriangle{ 0 },
_offsetIndex{ 0 }
{}
size_t _countTriangle;
size_t _offsetIndex;
};
//子模型对象 范围
struct ModelObjectSub
{
ModelTriangleRange _range;
};
而ModelObjectMaterial表示模型材质:
//! 材质
struct Material
{
glm::vec4 _diffuseAlbedo;//漫反射率
glm::vec3 _fresnelR0; //菲涅耳系数
float _roughness; //粗糙度
};
//模型对象 材质
struct ModelObjectMaterial
{
//最后转为Model时,变为可以用的着色器资源
Material _material;
string _materialName;
//路径为空,则表示没有(VK加载时会返回0)
string _pathTexDiffuse;
string _pathTexNormal;
};
首先引入头文件:
#define TINYOBJLOADER_IMPLEMENTATION
#include
接口原型,将obj文件变为多个ModelObject:
vector ModelObject::_load_obj_2(string_view path_name);
取得文件名,和文件所在路径(会自动加载路径下的同名mtl文件,里面包含了材质):
string str_path = string{ path_name };
string str_base = String::EraseFilename(path_name);
const char* filename = str_path.c_str();
const char* basepath = str_base.c_str();
基本数据:
debug(format("开始加载obj文件:{},{}", filename, basepath));
bool triangulate = true;//三角化
tinyobj::attrib_t attrib; // 所有的数据放在这里
std::vector shapes;//子模型
std::vector materials;//材质
std::string warn;
std::string err;
加载并打印一些信息:
bool b_read = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, filename,
basepath, triangulate);
//打印错误
if (!warn.empty())
debug_warn(warn);
if (!err.empty())
debug_err(err);
if (!b_read)
{
debug_err(format("读取obj文件失败:{}", path_name));
return {};
}
debug(format("顶点数:{}", attrib.vertices.size() / 3));
debug(format("法线数:{}", attrib.normals.size() / 3));
debug(format("UV数:{}", attrib.texcoords.size() / 2));
debug(format("子模型数:{}", shapes.size()));
debug(format("材质数:{}", materials.size()));
这将打印以下数据:
由于obj文件只产生一个ModelObject,我们如下添加一个,并返回顶点、索引、材质等引用,用于后面填充:
//obj只有一个ModelObject
vector ret;
ModelObject* model_object = new ModelObject;
std::vector& mo_vertices = model_object->_allVertex;
std::vector& mo_indices = model_object->_allIndex;
vector& mo_material = model_object->_allMaterial;
ret.push_back(model_object);
首先记录材质信息:
//------------------获取材质-------------------
mo_material.resize(materials.size());
for (size_t i = 0; i < materials.size(); ++i)
{
tinyobj::material_t m = materials[i];
debug(format("材质:{},{}", i, m.name));
ModelObjectMaterial& material = model_object->_allMaterial[i];
material._materialName = m.name;
material._material._diffuseAlbedo = { m.diffuse[0], m.diffuse[1], m.diffuse[2], 1.0f };
material._material._fresnelR0 = { m.specular[0], m.specular[1], m.specular[2] };
material._material._roughness = ShininessToRoughness(m.shininess);
if(!m.diffuse_texname.empty())
material._pathTexDiffuse = str_base + m.diffuse_texname;
if (!m.normal_texname.empty())
material._pathTexNormal = str_base + m.normal_texname;
}
这将产生以下输出:
然后遍历shape,按材质记录顶点。这里需要注意的是,一个obj文件有多个shape,每个shape由n个三角面组成。而每个三角形拥有独立的材质编号,所以这里按材质分别记录,而不是一般的合并为整体:
//------------------获取模型-------------------
//按 材质 放入面的顶点
vector> all_sub;
all_sub.resize(1 + materials.size());//0为默认
for (size_t i = 0; i < shapes.size(); i++)
{//每一个子shape
tinyobj::shape_t& shape = shapes[i];
size_t num_index = shape.mesh.indices.size();
size_t num_face = shape.mesh.num_face_vertices.size();
debug(format("读取子模型:{},{}", i, shape.name));
debug(format("索引数:{};面数:{}", num_index, num_face));
//当前mesh下标(每个面递增3)
size_t index_offset = 0;
//每一个面
for (size_t j = 0; j < num_face; ++j)
{
int index_mat = shape.mesh.material_ids[j];//每个面的材质
vector& sub_idx = all_sub[1 + index_mat];
sub_idx.push_back(shape.mesh.indices[index_offset++]);
sub_idx.push_back(shape.mesh.indices[index_offset++]);
sub_idx.push_back(shape.mesh.indices[index_offset++]);
}
}
按材质记录顶点的索引(tinyobj::index_t)后,接下来就是读取顶点的实际数据,并防止重复读取:
//生成子模型,并填入顶点
std::unordered_map
uniqueVertices;//避免重复插入顶点
size_t i = 0;
for (vector& sub_idx : all_sub)
{
ModelObjectSub sub;
sub._range._offsetIndex = i;
sub._range._countTriangle = sub_idx.size() / 3;
model_object->_allSub.push_back(sub);
for (tinyobj::index_t& idx : sub_idx)
{
auto iter = uniqueVertices.find(idx);
if (iter == uniqueVertices.end())
{
Vertex v;
//v
v._pos[0] = attrib.vertices[idx.vertex_index * 3 + 0];
v._pos[1] = attrib.vertices[idx.vertex_index * 3 + 1];
v._pos[2] = attrib.vertices[idx.vertex_index * 3 + 2];
// vt
v._texCoord[0] = attrib.texcoords[idx.texcoord_index * 2 + 0];
v._texCoord[1] = attrib.texcoords[idx.texcoord_index * 2 + 1];
v._texCoord[1] = 1.0f - v._texCoord[1];
uniqueVertices[idx] = mo_vertices.size();
mo_indices.push_back((uint32_t)mo_vertices.size());
mo_vertices.push_back(v);
}
else
{
mo_indices.push_back((uint32_t)iter->second);
}
++i;
}
}
debug(format("解析obj模型完成:v{},i{}", mo_vertices.size(), mo_indices.size()));
return ret;
上面用到的哈希函数:
struct equal_idx
{
bool operator()(const tinyobj::index_t& a, const tinyobj::index_t& b) const
{
return a.vertex_index == b.vertex_index
&& a.texcoord_index == b.texcoord_index
&& a.normal_index == b.normal_index;
}
};
struct hash_idx
{
size_t operator()(const tinyobj::index_t& a) const
{
return ((a.vertex_index
^ a.texcoord_index << 1) >> 1)
^ (a.normal_index << 1);
}
};
最后打印出来的数据如下:
对于材质的处理,漫反射贴图即是基本贴图,而法线(凹凸)贴图、漫反射率、菲涅耳系数、光滑度等需要渲染管线支持并与光照计算产生效果。
可以此处获取最新的源码(我会改用Assimp,并添加骨骼动画、Blinn-Phong光照模型),也可以用后面的:DND/src/DND.ModelObject.cpp · 略游/DND - Gitee.com
如果有用,欢迎点赞、收藏、关注,我将更新更多C++相关的文章。
#define TINYOBJLOADER_IMPLEMENTATION
#include
struct equal_idx
{
bool operator()(const tinyobj::index_t& a, const tinyobj::index_t& b) const
{
return a.vertex_index == b.vertex_index
&& a.texcoord_index == b.texcoord_index
&& a.normal_index == b.normal_index;
}
};
struct hash_idx
{
size_t operator()(const tinyobj::index_t& a) const
{
return ((a.vertex_index
^ a.texcoord_index << 1) >> 1)
^ (a.normal_index << 1);
}
};
float ShininessToRoughness(float Ypoint)
{
float a = -1;
float b = 2;
float c;
c = (Ypoint / 100) - 1;
float D;
D = b * b - (4 * a * c);
float x1;
x1 = (-b + sqrt(D)) / (2 * a);
return x1;
}
vector ModelObject::_load_obj_2(string_view path_name)
{
string str_path = string{ path_name };
string str_base = String::EraseFilename(path_name);
const char* filename = str_path.c_str();
const char* basepath = str_base.c_str();
bool triangulate = true;
debug(format("开始加载obj文件:{},{}", filename, basepath));
tinyobj::attrib_t attrib; // 所有的数据放在这里
std::vector shapes;//子模型
std::vector materials;
std::string warn;
std::string err;
bool b_read = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, filename,
basepath, triangulate);
//打印错误
if (!warn.empty())
debug_warn(warn);
if (!err.empty())
debug_err(err);
if (!b_read)
{
debug_err(format("读取obj文件失败:{}", path_name));
return {};
}
debug(format("顶点数:{}", attrib.vertices.size() / 3));
debug(format("法线数:{}", attrib.normals.size() / 3));
debug(format("UV数:{}", attrib.texcoords.size() / 2));
debug(format("子模型数:{}", shapes.size()));
debug(format("材质数:{}", materials.size()));
//obj只有一个ModelObject
vector ret;
ModelObject* model_object = new ModelObject;
std::vector& mo_vertices = model_object->_allVertex;
std::vector& mo_indices = model_object->_allIndex;
vector& mo_material = model_object->_allMaterial;
ret.push_back(model_object);
//------------------获取材质-------------------
mo_material.resize(materials.size());
for (size_t i = 0; i < materials.size(); ++i)
{
tinyobj::material_t m = materials[i];
debug(format("材质:{},{}", i, m.name));
ModelObjectMaterial& material = model_object->_allMaterial[i];
material._materialName = m.name;
material._material._diffuseAlbedo = { m.diffuse[0], m.diffuse[1], m.diffuse[2], 1.0f };
material._material._fresnelR0 = { m.specular[0], m.specular[1], m.specular[2] };
material._material._roughness = ShininessToRoughness(m.shininess);
if(!m.diffuse_texname.empty())
material._pathTexDiffuse = str_base + m.diffuse_texname;
if (!m.normal_texname.empty())//注意这里凹凸贴图(bump_texname)更常见
material._pathTexNormal = str_base + m.normal_texname;
}
//------------------获取模型-------------------
//按 材质 放入面的顶点
vector> all_sub;
all_sub.resize(1 + materials.size());//0为默认
for (size_t i = 0; i < shapes.size(); i++)
{//每一个子shape
tinyobj::shape_t& shape = shapes[i];
size_t num_index = shape.mesh.indices.size();
size_t num_face = shape.mesh.num_face_vertices.size();
debug(format("读取子模型:{},{}", i, shape.name));
debug(format("索引数:{};面数:{}", num_index, num_face));
//当前mesh下标(每个面递增3)
size_t index_offset = 0;
//每一个面
for (size_t j = 0; j < num_face; ++j)
{
int index_mat = shape.mesh.material_ids[j];//每个面的材质
vector& sub_idx = all_sub[1 + index_mat];
sub_idx.push_back(shape.mesh.indices[index_offset++]);
sub_idx.push_back(shape.mesh.indices[index_offset++]);
sub_idx.push_back(shape.mesh.indices[index_offset++]);
}
}
//生成子模型,并填入顶点
std::unordered_map
uniqueVertices;//避免重复插入顶点
size_t i = 0;
for (vector& sub_idx : all_sub)
{
ModelObjectSub sub;
sub._range._offsetIndex = i;
sub._range._countTriangle = sub_idx.size() / 3;
model_object->_allSub.push_back(sub);
for (tinyobj::index_t& idx : sub_idx)
{
auto iter = uniqueVertices.find(idx);
if (iter == uniqueVertices.end())
{
Vertex v;
//v
v._pos[0] = attrib.vertices[idx.vertex_index * 3 + 0];
v._pos[1] = attrib.vertices[idx.vertex_index * 3 + 1];
v._pos[2] = attrib.vertices[idx.vertex_index * 3 + 2];
// vt
v._texCoord[0] = attrib.texcoords[idx.texcoord_index * 2 + 0];
v._texCoord[1] = attrib.texcoords[idx.texcoord_index * 2 + 1];
v._texCoord[1] = 1.0f - v._texCoord[1];
uniqueVertices[idx] = mo_vertices.size();
mo_indices.push_back((uint32_t)mo_vertices.size());
mo_vertices.push_back(v);
}
else
{
mo_indices.push_back((uint32_t)iter->second);
}
++i;
}
}
debug(format("解析obj模型完成:v{},i{}", mo_vertices.size(), mo_indices.size()));
return ret;
}