https://blog.csdn.net/sunjin9418/article/details/53143588
将一个顺序执行的流转变成一个并发的流只要调用 parallel()方法
public static long parallelSum(long n){
return Stream.iterate(1L, i -> i +1).limit(n).parallel().reduce(0L,Long::sum);
}
并行流就是一个把内容分成多个数据块,并用不不同的线程分别处理每个数据块的流。最后合并每个数据块的计算结果。
将一个并发流转成顺序的流只要调用sequential()方法
stream.parallel() .filter(...) .sequential() .map(...) .parallel() .reduce();
这两个方法可以多次调用, 只有最后一个调用决定这个流是顺序的还是并发的。
并发流使用的默认线程数等于你机器的处理器核心数。
通过这个方法可以修改这个值,这是全局属性。
System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "12");
并非使用多线程并行流处理数据的性能一定高于单线程顺序流的性能,因为性能受到多种因素的影响。
如何高效使用并发流的一些建议:
1. 如果不确定, 就自己测试。
2. 尽量使用基本类型的流 IntStream, LongStream, and DoubleStream
3. 有些操作使用并发流的性能会比顺序流的性能更差,比如limit,findFirst , 依赖元素顺序的操作在并发流中是极其消耗性能的 。findAny的性能就会好很多,应为不依赖顺序。
4. 考虑流中计算的性能(Q)和操作的性能(N)的对比, Q表示单个处理所需的时间, N表示需要处理的数量,如果Q的值越大, 使用并发流的性能就会越高。
5. 数据量不大时使用并发流,性能得不到提升。
6.考虑数据结构:并发流需要对数据进行分解,不同的数据结构被分解的性能时不一样的。
流的数据源和可分解性
源 可分解性
ArrayList 非常好
LinkedList 差
IntStream.range 非常好
Stream.iterate 差
HashSet 好
TreeSet 好
7. 流的特性以及中间操作对流的修改都会对数据对分解性能造成影响。 比如固定大小的流在任务分解的时候就可以平均分配,但是如果有filter操作,那么流就不能预先知道在这个操作后还会剩余多少元素。
8. 考虑最终操作的性能:如果最终操作在合并并发流的计算结果时的性能消耗太大,那么使用并发流提升的性能就会得不偿失。
9.需要理解并发流实现机制:
fork/join 框架
fork/join框架是jdk1.7引入的,java8的stream多线程并非流的正是以这个框架为基础的,所以想要深入理解并发流就要学习fork/join框架。
fork/join框架的目的是以递归方式将可以并行的任务拆分成更小的任务,然后将每个子任务的结果合并起来生成整体结果。它是ExecutorService接口的一个实现,它把子任务分配线程池(ForkJoinPool)中的工作线程。要把任务提交到这个线程池,必须创建RecursiveTask
fork/join框架流程示意图:
废话不多说,上代码:
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
import java.util.stream.LongStream;
/**
* Created by sunjin on 2016/7/5.
* 继承RecursiveTask来创建可以用于分支/合并的框架任务
*/
public class ForkJoinSumCalculator extends RecursiveTask
//要求和的数组
private final long[] numbers;
//子任务处理的数组开始和终止的位置
private final int start;
private final int end;
//不在将任务分解成子任务的阀值大小
public static final int THRESHOLD = 10000;
//用于创建组任务的构造函数
public ForkJoinSumCalculator(long[] numbers){
this(numbers, 0, numbers.length);
}
//用于递归创建子任务的构造函数
public ForkJoinSumCalculator(long[] numbers,int start,int end){
this.numbers = numbers;
this.start = start;
this.end = end;
}
//重写接口的方法
@Override
protected Long compute() {
//当前任务负责求和的部分的大小
int length = end - start;
//如果小于等于阀值就顺序执行计算结果
if(length <= THRESHOLD){
return computeSequentially();
}
//创建子任务来为数组的前一半求和
ForkJoinSumCalculator leftTask = new ForkJoinSumCalculator(numbers, start, start + length/2);
//将子任务拆分出去,丢到ForkJoinPool线程池异步执行。
leftTask.fork();
//创建子任务来为数组的后一半求和
ForkJoinSumCalculator rightTask = new ForkJoinSumCalculator(numbers, start + length/2, end);
//第二个任务直接使用当前线程计算而不再开启新的线程。
long rightResult = rightTask.compute();
//读取第一个子任务的结果,如果没有完成则等待。
long leftResult = leftTask.join();
//合并两个子任务的计算结果
return rightResult + leftResult;
}
//顺序执行计算的简单算法
private long computeSequentially(){
long sum = 0;
for(int i =start; i< end; i++){
sum += numbers[i];
}
return sum;
}
//提供给外部使用的入口方法
public static long forkJoinSum(long n) {
long[] numbers = LongStream.rangeClosed(1, n).toArray();
ForkJoinTask
return new ForkJoinPool().invoke(task);
}
}
注意事项:
1. 调用join 方法要等到调用这个方法的线程的自己的任务完成之后。
2. 不要直接去调用ForkJoinPool的invoke方法 ,只需要调用RecursiveTask的fork或者compute。
3. 拆解任务时只需要调用一次fork执行其中一个子任务, 另一个子任务直接利用当前线程计算。应为fork方法只是在ForkJoinPool中计划一个任务。
4.任务拆分的粒度不宜太细,不否得不偿失。
工作盗取
由于各种因素,即便任务拆分是平均的,也不能保证所有子任务能同时执行结束, 大部分情况是某些子任务已经结束, 其他子任务还有很多, 在这个时候就会有很多资源空闲, 所以fork/join框架通过工作盗取机制来保证资源利用最大化, 让空闲的线程去偷取正在忙碌的线程的任务。
在没有任务线程中的任务存在一个队列当中, 线程每次会从头部获取一个任务执行,执行完了再从queue的头部获取一个任务,直到队列中的所有任务执行完,这个线程偷取别的线程队列中的任务时会从队列到尾部获取任务,并且执行,直到所有任务执行结束。
从这个角度分析,任务的粒度越小, 资源利用越充分。
工作盗取示意图
可拆分迭代器Spliterator
它和Iterator一样也是用于遍历数据源中的元素,但是他是为并行执行而设计的。 java8 所有数据结构都实现了 这个接口, 一般情况不需要自己写实现代码。但是了解它的实现方式会让你对并行流的工作原理有更深的了解。(未完待续)
高效的使用java8中并行流的几条建议
一般而言,想给出任何关于什么时候该用并行流的定量建议都是不可能也毫无意义的,因为任何类似于“仅当至少有一千元素的时候才用并行流”的建议对于某台特定的机器上的特定操作可能是对的,但在略有差异的另一种情况下可能就大错特错了。尽管如此,我们至少可以提出一些定性的意见,帮你决定某个特定的情况下是否有必要使用并行流。
如果有疑问,测量。把顺序流转换并行流轻而易举,但却不一定是好事。在某些情况下,并行流并不总是比顺序流快。此外,并行流和你的直觉不一致,所以在考虑选择顺序流还是并行流时,第一也是最重要的建议就是使用合适的基准来检测其性能。
留意装箱。自动装箱和拆箱操作会大大降低性能。Java8中有原始类型流(IntStream、LongStream、DoubleStream)来避免这种操作,但凡有可能都应该使用这些原始流。
有些操作本身在并行流上的性能就比顺序流差。特别是limit、findFirst等依赖于元素顺序的操作,它们在并行流上执行的代价非常大。例如,findAny会比findFirst性能好,因为它不一定要顺序来执行。你总是可以调用unordered方法来把顺序流变成无须流。那么,如果你需要流中的n个元素而不是专门的前n个的话,对无序并行流调用limit可能会比单个有序流(比如数据源是List)更高效。
还要考虑流的操作流水线的总计算成本。设N是要处理的元素的总数,Q是一个元素通过流水线的大致处理成本,则N*Q就是这个对成本的一个粗略的定型估计。Q值较高就意味着使用并行流时性能好的可能性比较大。
对于较小的数据量,选择并行流几乎从来不都是一个好的选择。并行处理少数几个元素的好处还抵不上并行化造成的额外开销。
要考虑流背后的数据结构是否易于分解。例如,ArrayList的拆分效率比LinkedList高很多,因为前者用不着遍历就可以平均拆分,而后者则必须遍历。另外,用range工厂方法创建的原始类型流也可以快速分解。最后,你可以自己实现Spliterator来完全掌握分解过程。
流自身的特点,以及流水线中的中间操作修改流的方式,都可能会改变分解过程的性能。例如,一个SIZED流可以分成大小相等的两部分,这样每个部分都可以比较高效地并行处理,但筛选操作可能丢弃的元素个数却无法预测,导致流本身的大小未知。
还要考虑终端操作中合并步骤的代价是大是小(例如Collector中的combiner方法)。如果这一步代价很大,那么组合每个子流产生的部分结果所付出的代价就可能会超出通过并行流得到的性能提升。
按照可分解性总结了一些流数据源适不适合于并行。
源 | 可分解性 |
ArrayList | 极佳 |
LinkedList | 差 |
IntStream.range | 极佳 |
Stream.iterate | 差 |
hashSet | 好 |
TreeSet | 好 |