题目:Monocular Arbitrary Moving Object Discovery and Segmentation
作者:
来源:BMVC
时间:2021
代码地址:https://github.com/michalneoral/Raptor
我们提出了一种发现和分割场景中独立移动的物体或其部分的方法。给定三个单眼视频帧,该方法输出语义上有意义的区域,即对应于整个对象的区域,即使只有其中一部分移动。
基于 CNN 的端到端方法的架构称为 Raptor,它结合了语义和运动主干,将其输出传递到最终的区域分割网络。语义主干以与类无关的方式进行训练,以便泛化到训练数据之外的对象类。运动分支的核心是根据光流、光学扩展、单深度和估计的相机运动计算出的几何成本量。
对所提出的架构在 KITTI、DAVIS-Moving 和 YTVOSMoving 数据集上的实例运动分割和二元动静态分割问题的评估表明,所提出的方法在所有数据集上实现了最先进的结果,并且能够很好地泛化到各种环境。对于KITTI数据集,我们提供了升级的实例运动分割注释,涵盖了所有运动对象。
只有单个相机可用(单目视觉),相机不一定是静态的,并且处理需要是因果的。目标是发现并分割所有独立移动的“物体”。我们将该问题称为移动对象发现和分割 – MODaS
MODaS 规范的关键是实例或对象的定义。常用的定义(参见第 2 节)是几何定义——一组经历相同刚性运动并在空间上连接的像素。此定义在两种重要情况下失败:(i) 当对象不是刚性的时,以及 (ii) 当两个语义不同但邻近的对象移动相似时(参见图 1)。对于应用程序来说,过度分割和分割不足的情况都是有问题的。例如,当一个人移动她的腿时,应该返回整个人的轮廓,因为要预测位置的是人,而不是腿。因此,移动对象在几何上被定义,其部分独立于相机运动而移动,并且在语义上,它是语义上有意义的实体。
对象发现与现代检测器密切相关,因为它们不仅输出位置,还输出可能数百个类别的分割[18]。在这方面,我们更进一步,使用以与类无关的方式训练的检测器[14],其中所有类都合并为单个“对象”类。这样,检测器可以更好地概括训练期间未见过的类别的对象(例如,当训练数据仅包含马时检测到骆驼)。为了将其与已知类的检测问题区分开来,我们将其称为对象发现。
独立运动。当一个物体(或其部分)的表观运动不是相机自我运动的结果时,该物体(或其一部分)被认为是独立移动的。一般来说,从单目相机识别此类运动是一个不适定问题。由于光流本身只是 3D 场景运动的 2D 投影,因此其解释是不明确的。单目深度估计的最新进展提供了克服这些模糊性的可能方法。对于统计数据与训练数据集相似的场景,单一深度可以作为真实深度的有用先验,并且能够消除观察到的运动的歧义[46]
我们提出了一种名为 Raptor 的基于 CNN 的架构,它基于语义和几何处理的新颖组合。我们表明,与类无关的语义部分导致了语义上有意义的对象的发现,而几何运动成本量处理解决了明显的运动歧义。该网络发现刚性和非刚性移动对象及其实例分割掩模。与大多数方法 [14、15、20、31、33、38、46] 不同,Raptor 架构使用三个框架进行 MODaS。我们是第一个将几何部分扩展到两帧处理之外的人。
我们表明,对两个方向(向前和向后)的几何特征的估计提高了 Raptor 的发现和分割输出的精度
所提出的 Raptor 架构如图 2 所示。它有两个输入分支:一个生成语义特征(绿色),另一个使用运动成本量 (MCV) 生成运动特征(橙色)。它们的输出被连接并发送到混合任务级联(HTC)[11]头,该头生成移动对象掩模。
语义主干(图 2 (a))改编自 DetectoRS 架构 [29]。它围绕递归特征金字塔主干 (RFP) 和可切换空洞卷积 (SAC) 构建。我们使用主干网的 ResNet-50 变体。
为了将检测管道转换为对象发现方法,以便它更好地推广到未知类,我们遵循[14]的类不可知训练的思想。我们在对象分割问题 [21] 上训练主干网络和临时 HTC 头,将所有对象类别合并为单个“对象”类别。本次训练不存在运动分支。 [14] 中已经表明,这种方法可以更好地预测未知类。训练结束后,HTC 头被丢弃,语义主干权重被固定。
运动分支(图 2 (b))的灵感来自于最近的刚体运动分割方法 [46]。它使用单眼深度 D t D_t Dt 、光流 F t − > t + 1 F_{t->t+1} Ft−>t+1、光学扩展 E t + 1 E_{t+1} Et+1 和自我运动估计 [ R t + 1 , t t + 1 ] [R_{t+1},t_{t+1}] [Rt+1,tt+1] 作为前向运动成本体积 (MCV) 构造的输入。我们使用 F t − > t − 1 F_{t->t-1} Ft−>t−1、 E t − 1 E_{t-1} Et−1 和 [ R t − 1 , t t − 1 ] [R_{t-1},t_{t-1}] [Rt−1,tt−1] 进一步计算“向后”MCV。和[46]一样,我们为每个方向构建一个 14 通道 MCV,包括:对极几何的每像素 Samson 误差、每像素旋转单应性重投影误差、3D P+P 成本、深度对比度成本、重建 3D来自光流的场景点、校正运动场、光流和光学扩展的不确定性以及 3D 角度 P+P 成本。这些成本旨在指示与估计的自我运动的不一致,同时处理共面或共线运动或自我运动简并的各种模糊性。
运动分支主干架构与语义主干架构类似,但它不是基于 ResNet-50,而是基于 ResNet-18 DetectoRS 架构构建。输入是每个方向的 14 通道运动成本量。图像特征不直接输入到运动主干。向前和向后方向的MCV一一穿过运动主干。运动分支是用另一个临时 HTC 头单独预训练的,没有 MODaS 问题的语义主干。训练结束后,临时 HTC 头再次被丢弃,运动主干被固定。
语义 + 运动(图 2 (b)) 两个分支的输出被连接起来。
语义分支产生五个特征张量 F 1 / 4 、 F 1 / 8 、 F 1 / 16 、 F 1 / 32 、 F 1 / 64 F_{1/4} 、F_{1/8}、 F_{1/16} 、 F_{1/32} 、 F_{1/64} F1/4、F1/8、F1/16、F1/32、F1/64 ,空间分辨率递减,每个特征张量有 256 个通道。
原始运动分支生成每个方向 256 个通道的特征张量。面对训练设备的内存限制,我们通过额外的 1x1 卷积层将输出标准化为 128 通道。然后,两个方向的输出与语义主干的特征连接并馈送到 HTC 头(总共 512 个通道)。由于 MCV 仅针对刚体运动而设计,因此它会报告铰接对象的仅部分不一致问题。 HTC 头的任务是将这些部分不一致与语义特征结合在一起,并输出完整的运动对象分割掩模。
两个分支在最终训练中都是固定的,并且只有最终的 HTC 头部接受了移动物体发现的训练。运动分支归一化 1x1 CNN 层在训练的最后阶段与 HTC 一起进行训练。
MCV 组件的改进。运动分支使用多种外部算法来生成其输入。我们还小心翼翼地将它们带到文献中最先进的版本。我们使用 RAFT [32] 代替原来较旧且较弱的 VCN [45] 光流估计器。我们在广泛的数据集上训练 RAFT(鲁棒视觉挑战风格,如先前的作品 [24, 39] 展示了增强的泛化能力)。使用此光流估计,我们还重新训练了光学扩展部分。
与原始 VCN 不同,RAFT 不输出超出范围的置信度,这是 MCV 中的通道之一。我们将其替换为类似的前向-后向一致性成本,该成本针对 MCV 计算为 F t − > t + 1 + w a r p ( F t + 1 − > t ; F t − > t + 1 ) F_{t->t+1} + warp(F_{t+1->t} ;F_{t->t+1}) Ft−>t+1+warp(Ft+1−>t;Ft−>t+1),其中 warp 操作转换流 $F_{t+1->t}到框架 t。我们不设置该值的阈值。
MCV 的构建需要内部相机参数和相机运动 [R;t] 的估计,以分解基本矩阵。我们选择 NG-RANSAC [6] 进行基本矩阵估计,因为它允许在未来的工作中进行可能的端到端训练。
对于不包含相机固有参数的数据集,我们将焦距设置为 1 / m a x ( I w i d t h , I h e i g h t ) 1/max(I_{width},I_{height}) 1/max(Iwidth,Iheight),并将主点设置为图像的中点。
(见图 5)最常见的问题是缓慢移动的物体、远离相机的物体或靠近扩展点的物体。它们的检测可能需要更长的时间整合。观察到的另一个问题是合并不明确的对象实例(带包的人、摩托车及其驾驶员等)。 Raptor 还与明显被遮挡的对象(树叶、条形后面……)作斗争,有时会返回静态但语义上有意义的对象。