七 OC底层原理 cache_t 方法缓存

前言

在前面几篇文章中 我们分别探索了 objc_class 中的 isa , superClass , bits. 现在我们来看看 cache_t 中到底有什么作用

一 . cache_t 的结构

在这段类结构代码中,我们可以看到 类结构中存在一个cache_t

struct objc_class : objc_object {
    // Class ISA;
    Class superclass;
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags

    class_rw_t *data() const {
        return bits.data();
    }
    void setData(class_rw_t *newData) {
        bits.setData(newData);
    }
    ... 省略
}

下面是部分cache_t的结构

#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED // macOS 模拟器
    explicit_atomic _buckets;
    explicit_atomic _mask;
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16 // 64 位真机
    explicit_atomic _maskAndBuckets;
    mask_t _mask_unused;
    
    // How much the mask is shifted by.
    static constexpr uintptr_t maskShift = 48;
    
    // Additional bits after the mask which must be zero. msgSend
    // takes advantage of these additional bits to construct the value
    // `mask << 4` from `_maskAndBuckets` in a single instruction.
    static constexpr uintptr_t maskZeroBits = 4;
    
    // The largest mask value we can store. 可以存储的最大掩码值 2^16-1
    static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
    
    // The mask applied to `_maskAndBuckets` to retrieve the buckets pointer.
    static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
    // Ensure we have enough bits for the buckets pointer.
    static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4 // 非64位真机
    // _maskAndBuckets stores the mask shift in the low 4 bits, and
    // the buckets pointer in the remainder of the value. The mask
    // shift is the value where (0xffff >> shift) produces the correct
    // mask. This is equal to 16 - log2(cache_size).
    explicit_atomic _maskAndBuckets;
    mask_t _mask_unused;

    static constexpr uintptr_t maskBits = 4;
    static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
    static constexpr uintptr_t bucketsMask = ~maskMask;
#else
#error Unknown cache mask storage type.
#endif
    
#if __LP64__
    uint16_t _flags;
#endif
    uint16_t _occupied;

由于 主要我们实在 Mac 上调试, 所以最终的 cache_t 的结构 具有四个参数

explicit_atomic _buckets; // 存储方法的 hash 表
explicit_atomic _mask; // 算法使用的掩码
uint16_t _occupied; // hash 表中占用的数量

其中主要是看 bucket_t 的结构
我们可以看到 真机和 模拟器的区别就是。 impsel 的顺序问题
看注释我们可以知道 这样调整顺序是在相应的架构下 有更好的优化


struct bucket_t {
private:
    // IMP-first is better for arm64e ptrauth and no worse for arm64.
    // SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__ // 真机
    explicit_atomic _imp; // 函数指针,指向方法的具体实现
    explicit_atomic _sel; // 方法编号
#else // 模拟器
    explicit_atomic _sel;
    explicit_atomic _imp;
#endif

    // Compute the ptrauth signing modifier from &_imp, newSel, and cls.
    uintptr_t modifierForSEL(SEL newSel, Class cls) const {
        return (uintptr_t)&_imp ^ (uintptr_t)newSel ^ (uintptr_t)cls;
    }

    // Sign newImp, with &_imp, newSel, and cls as modifiers.
    uintptr_t encodeImp(IMP newImp, SEL newSel, Class cls) const {
        if (!newImp) return 0;
#if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_PTRAUTH
        return (uintptr_t)
            ptrauth_auth_and_resign(newImp,
                                    ptrauth_key_function_pointer, 0,
                                    ptrauth_key_process_dependent_code,
                                    modifierForSEL(newSel, cls));
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
        return (uintptr_t)newImp ^ (uintptr_t)cls;
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_NONE
        return (uintptr_t)newImp;
#else
#error Unknown method cache IMP encoding.
#endif
    }

二. cache_t 方法缓存的添加

  • LLDB 调试准备 我们先建立一个测试类,其中添加一些实例方法
    eg.
- (void)logCup;
- (void)logPen;
- (void)logKeyboard;
- (void)logMouse;
int main(int argc, const char * argv[]) {
    @autoreleasepool {
        // insert code here...
         TObject *t = [TObject alloc];
         NSLog(@"%p", t);

         [t logCup];
         [t logPen];
         [t logMouse];
         [t logKeyboard];
             
    }
    return 0;
}
  1. 我们在初始化之前先下个断点 进行 lldb 调试 ,由下面的调试我们可以知道 缓存 内都是空的,并没有任何方法的痕迹
(lldb) p/x TObject.class // 获取 class 类对象地址
(Class) $0 = 0x0000000100002318 TObject
(lldb) p (cache_t*)0x0000000100002328 // 通过地址偏移16字节,强转 cache_t 类型
(cache_t *) $1 = 0x0000000100002328
(lldb) p *$1 
(cache_t) $2 = {
  _buckets = {
    std::__1::atomic = 0x000000010032d420 {
      _sel = {
        std::__1::atomic = (null)
      }
      _imp = {
        std::__1::atomic = 0
      }
    }
  }
  _mask = {
    std::__1::atomic = 0
  }
  _flags = 32804
  _occupied = 0
}
  1. 接下来 我们在调用 alloc 之后下一个断点 继续调试
    我们可以看到 _buckets 缓存数据发生了改变
(lldb) p/x t.class
(Class) $6 = 0x0000000100002318 TObject
(lldb) p (cache_t*) 0x0000000100002328
(cache_t *) $7 = 0x0000000100002328
(lldb) p *$7
(cache_t) $8 = {
  _buckets = {
    std::__1::atomic = 0x0000000101004bf0 {
      _sel = {
        std::__1::atomic = ""
      }
      _imp = {
        std::__1::atomic = 3274184
      }
    }
  }
  _mask = {
    std::__1::atomic = 3
  }
  _flags = 32804
  _occupied = 2
}
(lldb) 
  1. 我们在每个方法都打个断点,当调用完第一个方法之后我们进行调试, 我们看到 _occupied 又变成 1 了,那这到底做了什么呢?
2020-12-21 23:54:11.872707+0800 Objc_m [2835:50950] -[TObject logCup]
(lldb) p *$1
(cache_t) $3 = {
  _buckets = {
    std::__1::atomic = 0x00000001007117a0 {
      _sel = {
        std::__1::atomic = (null)
      }
      _imp = {
        std::__1::atomic = 0
      }
    }
  }
  _mask = {
    std::__1::atomic = 7
  }
  _flags = 32804
  _occupied = 1
}
  1. 我们在第二个方法调用完下个断点,继续调试,我们可以看到 _occupied 又加了1
2020-12-21 23:56:51.210222+0800 Objc_m[2835:50950] -[TObject logPen]
(lldb) p *$1
(cache_t) $4 = {
  _buckets = {
    std::__1::atomic = 0x00000001007117a0 {
      _sel = {
        std::__1::atomic = (null)
      }
      _imp = {
        std::__1::atomic = 0
      }
    }
  }
  _mask = {
    std::__1::atomic = 7
  }
  _flags = 32804
  _occupied = 2
}
  1. 我们在第三个方法调用完下个断点,继续调试,我们可以看到 _occupied 又加了1, 这是我们可以猜测 _occupied 和方法的个数有关
2020-12-21 23:59:32.413929+0800 Objc_m[2835:50950] -[TObject logMouse]
(lldb) p *$1
(cache_t) $5 = {
  _buckets = {
    std::__1::atomic = 0x00000001007117a0 {
      _sel = {
        std::__1::atomic = ""
      }
      _imp = {
        std::__1::atomic = 12264
      }
    }
  }
  _mask = {
    std::__1::atomic = 7
  }
  _flags = 32804
  _occupied = 3
}

此时我们就可以通过 源码进行调试,搜索_occupied,观察其变化,也就有了下面的代码

void cache_t::incrementOccupied() 
{
    _occupied++;
}

void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
{
#if CONFIG_USE_CACHE_LOCK
    cacheUpdateLock.assertLocked();
#else
    runtimeLock.assertLocked();
#endif

    ASSERT(sel != 0 && cls->isInitialized());

    // Use the cache as-is if it is less than 3/4 full
    mask_t newOccupied = occupied() + 1;
    unsigned oldCapacity = capacity(), capacity = oldCapacity;
    if (slowpath(isConstantEmptyCache())) {
        // Cache is read-only. Replace it.
        // 假如之前没有分配过缓存空间的,分配一个初始容量为4的空间,并在其中将_occupied置为0
       // INIT_CACHE_SIZE  1<<2
        if (!capacity) capacity = INIT_CACHE_SIZE;
        reallocate(oldCapacity, capacity, /* freeOld */false);
    }
    else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) {
        // Cache is less than 3/4 full. Use it as-is.
        // 缓存不超过3/4就会维持缓存空间不变
    }
    else {
      // 缓存超过3/4则分配一个容量为当前两倍的新空间
        capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
        // MAX_CACHE_SIZE 1<<16
        if (capacity > MAX_CACHE_SIZE) {
            capacity = MAX_CACHE_SIZE;
        }
        reallocate(oldCapacity, capacity, true);
    }

    bucket_t *b = buckets();
    mask_t m = capacity - 1;
    mask_t begin = cache_hash(sel, m); // 通过掩码获取方法的缓存的次序
    mask_t i = begin; 

    // Scan for the first unused slot and insert there.
    // There is guaranteed to be an empty slot because the
    // minimum size is 4 and we resized at 3/4 full. 
    // 最小是4,当充满3/4 就会 重新分配
    do {
        if (fastpath(b[i].sel() == 0)) {
            incrementOccupied(); // 自增 _occupied
            b[i].set(sel, imp, cls); // 方法写入缓存
            return;
        }
        if (b[i].sel() == sel) { // 已经加入了缓存
            // The entry was added to the cache by some other thread
            // before we grabbed the cacheUpdateLock.
            return;
        }
    } while (fastpath((i = cache_next(i, m)) != begin));

    cache_t::bad_cache(receiver, (SEL)sel, cls);
}
void cache_fill(Class cls, SEL sel, IMP imp, id receiver)
{
    runtimeLock.assertLocked();

#if !DEBUG_TASK_THREADS
    // Never cache before +initialize is done
    if (cls->isInitialized()) {
        cache_t *cache = getCache(cls);
#if CONFIG_USE_CACHE_LOCK
        mutex_locker_t lock(cacheUpdateLock);
#endif
        cache->insert(cls, sel, imp, receiver);
    }
#else
    _collecting_in_critical();
#endif
}

我们下断点 观察一下 alloc 到底做了什么
可以看到 调用了 alloc 方法, 接着 开辟了4 字节的空间,接着调用 return 方法,添加引用技术,所以 _occupied 变成了2

image.png

image.png

通过断点 我们发现 之前 的 2 都是针对于 NSObject 类对象产生的

而之后的方法的 Tobject 调用方法 使用的是 Tobject 的类对象中的 cache_t
三. 总结

  • OC 中的实例方法混存在类中,类方法缓存在元类上
  • 缓存最小是4字节,缓存充满 3/4时,会扩容至当前的2倍
  • 扩容并不是在原来的基础上添加,而是重新开辟新的 allocateBuckets,释放旧的 cache_collect_free,把最近一次临界的imp和key缓存进来,经典的LRU算法。

你可能感兴趣的:(七 OC底层原理 cache_t 方法缓存)