组合数的公式

A n m = n × ( n − 1 ) × . . . × ( n − m + 1 ) = n ! ( n − m ) ! A^{m}_{n} = n \times (n - 1) \times ...\times (n - m + 1) = \frac{n!}{(n-m)!} Anm=n×(n1)×...×(nm+1)=(nm)!n!

C n m = n × ( n − 1 ) × . . . × ( n − m + 1 ) m ! = n ! ( n − m ) ! m ! = n ! m ! × ( n − m ) ! C^{m}_{n} = \frac{n \times (n - 1) \times ... \times (n - m + 1) }{m!} = \frac{\frac{n!}{(n - m)!}}{m!} = \frac{n!}{m! \times (n-m)!} Cnm=m!n×(n1)×...×(nm+1)=m!(nm)!n!=m!×(nm)!n!

C n n − m = n × ( n − 1 ) × . . . × ( n − ( n − m ) + 1 ) ( n − m ) ! = n ! ( n − ( n − m ) ) ! ( n − m ) ! = n ! m ! ( n − m ) ! = n ! m ! × ( n − m ) ! C^{n - m}_{n} = \frac{n \times (n - 1) \times ... \times (n - (n - m) + 1) }{(n - m)!} = \frac{\frac{n!}{(n - (n - m))!}}{(n - m)!} = \frac{\frac{n!}{m!}}{(n - m)!} = \frac{n!}{m! \times (n-m)!} Cnnm=(nm)!n×(n1)×...×(n(nm)+1)=(nm)!(n(nm))!n!=(nm)!m!n!=m!×(nm)!n!

A m m = m × ( m − 1 ) × . . . × 1 = m ! A^{m}_{m} = m \times (m - 1) \times ... \times 1 = m! Amm=m×(m1)×...×1=m!


∵ n ! m ! × ( n − m ) ! × m ! = n ! ( n − m ) ! \because \frac{n!}{m! \times (n-m)!} \times m! = \frac{n!}{(n-m)!} m!×(nm)!n!×m!=(nm)!n!
∴ C n m × A m m = A n m \therefore C^{m}_{n} \times A^{m}_{m} = A^{m}_{n} Cnm×Amm=Anm

又 ∵ C n n − m = C n m 又 \because C^{n-m}_{n} = C^{m}_{n} Cnnm=Cnm
∴ C n m × A m m = C n n − m × A m m = A n m \therefore C^{m}_{n} \times A^{m}_{m} = C^{n-m}_{n} \times A^{m}_{m} = A^{m}_{n} Cnm×Amm=Cnnm×Amm=Anm
∴ A n m = C n m × A m m = C n n − m × A m m \therefore A^{m}_{n} = C^{m}_{n} \times A^{m}_{m} = C^{n-m}_{n} \times A^{m}_{m} Anm=Cnm×Amm=Cnnm×Amm

你可能感兴趣的:(应用,学习)