最近在学习使用rasa构建聊天机器人,为了实现一个比较特别的功能,需要搞懂源码。rasa 的代码质量相当高,注释完整,函数定义包含 type hint 读起来非常舒服。
rasa_core.nlg模块包含5个py脚本:
- __init__.py
- callback.py
- generator.py
- interpolator.py
- template.py
首先看 __init__.py
from rasa.core.nlg.generator import NaturalLanguageGenerator
from rasa.core.nlg.template import TemplatedNaturalLanguageGenerator
from rasa.core.nlg.callback import CallbackNaturalLanguageGenerator
可以看到,nlg模块主要有三个类,
- NaturalLanguageGenerator(NLG)
- TemplatedNaturalLanguageGenerator(TNLG)
- CallbackNaturalLanguageGenerator(CNLG)
TNLG与CNLG都继承自NLG,所以从NLG开始。
NaturalLanguageGenerator
NLG类包含两个成员函数:
- generate
- create
generate是抽象函数,没有具体实现,create是静态函数。
generate:
async def generate(
self,
template_name: Text,
tracker: "DialogueStateTracker",
output_channel: Text,
**kwargs: Any,
) -> Optional[Dict[Text, Any]]
异步抽象函数,用于对用户输入产生回复。
create
@staticmethod
def create(
obj: Union["NaturalLanguageGenerator", EndpointConfig, None],
domain: Optional[Domain],
) -> "NaturalLanguageGenerator":
"""Factory to create a generator."""
if isinstance(obj, NaturalLanguageGenerator):
return obj
else:
return _create_from_endpoint_config(obj, domain)
静态函数,用于产生一个NLG实例。建议的输入obj是NLG实例或者EndpointConfig对象,domain是Domain对象,如果obj是NLG实例,直接返回obj,否则根据EndpointConfig和Domain的配置,借助了_create_from_endpoint_config函数,实例化一个NLG。
_create_from_endpoint_config
接下来,我们来看_create_from_endpoint_config这个函数。
def _create_from_endpoint_config(
endpoint_config: Optional[EndpointConfig] = None, domain: Optional[Domain] = None,
) -> "NaturalLanguageGenerator":
"""Given an endpoint configuration, create a proper NLG object."""
domain = domain or Domain.empty()
if endpoint_config is None:
from rasa.core.nlg import ( # pytype: disable=pyi-error
TemplatedNaturalLanguageGenerator,
)
# this is the default type if no endpoint config is set
nlg = TemplatedNaturalLanguageGenerator(domain.templates)
elif endpoint_config.type is None or endpoint_config.type.lower() == "callback":
from rasa.core.nlg import ( # pytype: disable=pyi-error
CallbackNaturalLanguageGenerator,
)
# this is the default type if no nlg type is set
nlg = CallbackNaturalLanguageGenerator(endpoint_config=endpoint_config)
elif endpoint_config.type.lower() == "template":
from rasa.core.nlg import ( # pytype: disable=pyi-error
TemplatedNaturalLanguageGenerator,
)
nlg = TemplatedNaturalLanguageGenerator(domain.templates)
else:
nlg = _load_from_module_string(endpoint_config, domain)
logger.debug(f"Instantiated NLG to '{nlg.__class__.__name__}'.")
return nlg
_create_from_endpoint_config的输入同样是EndpointConfig对象和Domain对象。函数主体是if-else的结构,根据EndpointConfig的状况决定构建怎样的NLG实例。
_load_from_module_string
def _load_from_module_string(
endpoint_config: EndpointConfig, domain: Domain
) -> "NaturalLanguageGenerator":
"""Initializes a custom natural language generator.
Args:
domain: defines the universe in which the assistant operates
endpoint_config: the specific natural language generator
"""
try:
nlg_class = common.class_from_module_path(endpoint_config.type)
return nlg_class(endpoint_config=endpoint_config, domain=domain)
except (AttributeError, ImportError) as e:
raise Exception(
f"Could not find a class based on the module path "
f"'{endpoint_config.type}'. Failed to create a "
f"`NaturalLanguageGenerator` instance. Error: {e}"
)
TemplatedNaturalLanguageGenerator
TNLG继承自NLG,除了NLG的成员函数之外,还有以下新成员:
- _templates_for_utter_action
- _random_template_for
- generate
- generate_from_slots
- _fill_template
- _template_variables
首先来看最重要的generate。
generate
async def generate(
self,
template_name: Text,
tracker: DialogueStateTracker,
output_channel: Text,
**kwargs: Any,
) -> Optional[Dict[Text, Any]]:
"""Generate a response for the requested template."""
filled_slots = tracker.current_slot_values()
return self.generate_from_slots(
template_name, filled_slots, output_channel, **kwargs
)
输入是模板名和tracker对象,在模板中填充tracker记录的槽位生成回复语句。生成语句这里调用的是generate_from_slots函数。
generate_from_slots
def generate_from_slots(
self,
template_name: Text,
filled_slots: Dict[Text, Any],
output_channel: Text,
**kwargs: Any,
) -> Optional[Dict[Text, Any]]:
"""Generate a response for the requested template."""
# Fetching a random template for the passed template name
r = copy.deepcopy(self._random_template_for(template_name, output_channel))
# Filling the slots in the template and returning the template
if r is not None:
return self._fill_template(r, filled_slots, **kwargs)
else:
return None
这里调用_random_template_for随机选择模板(一个action可能对应多个回复模板),然后调用_fill_template填充模板中的槽位。
先来看_random_template_for。
_random_template_for
def _random_template_for(
self, utter_action: Text, output_channel: Text
) -> Optional[Dict[Text, Any]]:
"""Select random template for the utter action from available ones.
If channel-specific templates for the current output channel are given,
only choose from channel-specific ones.
"""
import numpy as np
if utter_action in self.templates:
suitable_templates = self._templates_for_utter_action(
utter_action, output_channel
)
if suitable_templates:
return np.random.choice(suitable_templates)
else:
return None
else:
return None
调用_templates_for_utter_action函数拿到当前action的所有模板,使用np.random.choice在模板列表中随机选择一个。可以看到,输入是action名,返回的template其实是一个 dict 对象。
_fill_template
_fill_template将对选择的模板进行槽位填充的工作。
def _fill_template(
self,
template: Dict[Text, Any],
filled_slots: Optional[Dict[Text, Any]] = None,
**kwargs: Any,
) -> Dict[Text, Any]:
""""Combine slot values and key word arguments to fill templates."""
# Getting the slot values in the template variables
template_vars = self._template_variables(filled_slots, kwargs)
keys_to_interpolate = [
"text",
"image",
"custom",
"button",
"attachment",
"quick_replies",
]
if template_vars:
for key in keys_to_interpolate:
if key in template:
template[key] = interpolate(template[key], template_vars)
return template
可以看到,输入的模板template和填充槽位filled_slots都是dict对象。暂时没有看到具体的例子,猜测:
filled_slots中的所有key都是template中的槽位名,value是对槽位的填充值value,通过替换template中的槽位填充值,完成回复语句的生成。
interpolate.py
在实现TNLG的回复生成阶段,调用了interpolate.py下的两个模块 interpolate和interpolate_text。interpolate_text用于对text格式的template进行槽位填充,使用正则表达式替换和str.format()的形式:
def interpolate_text(template: Text, values: Dict[Text, Text]) -> Text:
# transforming template tags from
# "{tag_name}" to "{0[tag_name]}"
# as described here:
# https://stackoverflow.com/questions/7934620/python-dots-in-the-name-of-variable-in-a-format-string#comment9695339_7934969
# black list character and make sure to not to allow
# (a) newline in slot name
# (b) { or } in slot name
try:
text = re.sub(r"{([^\n{}]+?)}", r"{0[\1]}", template)
text = text.format(values)
if "0[" in text:
# regex replaced tag but format did not replace
# likely cause would be that tag name was enclosed
# in double curly and format func simply escaped it.
# we don't want to return {0[SLOTNAME]} thus
# restoring original value with { being escaped.
return template.format({})
return text
except KeyError as e:
logger.exception(
"Failed to fill utterance template '{}'. "
"Tried to replace '{}' but could not find "
"a value for it. There is no slot with this "
"name nor did you pass the value explicitly "
"when calling the template. Return template "
"without filling the template. "
"".format(template, e.args[0])
)
return template
CallbackNaturalLanguageGenerator
最后,来看CNLG。CNLG的结构要简单很多,仅包含两个成员函数,一个产生回复的generate,另一个用于检验回复格式是否合法的validate_response。
generate
async def generate(
self,
template_name: Text,
tracker: DialogueStateTracker,
output_channel: Text,
**kwargs: Any,
) -> Dict[Text, Any]:
"""Retrieve a named template from the domain using an endpoint."""
body = nlg_request_format(template_name, tracker, output_channel, **kwargs)
logger.debug(
"Requesting NLG for {} from {}."
"".format(template_name, self.nlg_endpoint.url)
)
response = await self.nlg_endpoint.request(
method="post", json=body, timeout=DEFAULT_REQUEST_TIMEOUT
)
if self.validate_response(response):
return response
else:
raise Exception("NLG web endpoint returned an invalid response.")
输入是action的名称,用于记录的tracker,以及output_channel。首先从nlg_request_format函数中得到request的body,之后向endpoint上的服务发出请求,调用定义在对应Action类中的run函数,得到response,验证response的合法性,并且返回。
nlg_request_format
def nlg_request_format(
template_name: Text,
tracker: DialogueStateTracker,
output_channel: Text,
**kwargs: Any,
) -> Dict[Text, Any]:
"""Create the json body for the NLG json body for the request."""
tracker_state = tracker.current_state(EventVerbosity.ALL)
return {
"template": template_name,
"arguments": kwargs,
"tracker": tracker_state,
"channel": {"name": output_channel},
}
这个函数处理产生request的主体,用于指定Action的调用。在写Action的时候就很好奇,Action类的run函数一般定义成这样:def run(self, dispatcher, tracker, domain)
,后来就很神奇的发现这里边的tracker并不是一个rasa_core.trackers,包含的信息比较少。果然,这里产生的tracker,仅仅保留了当前状态。