下面以斐波那契数列来引用矩阵乘法。
已知斐波那契数列:
能否构造一个矩阵A,使得
根据斐波那契的性质,
例题拓展:斐波那契前 n 项和1303. 斐波那契前 n 项和 - AcWing题库
大家都知道 Fibonacci 数列吧,
现在问题很简单,输入 n 和 m,求 fn 的前 n 项和 Sn mod m。
输入格式
共一行,包含两个整数 n 和 m。
输出格式
输出前 n 项和 Sn mod m 的值。
数据范围
1≤n≤2000000000,
1≤m≤1000000010
输入样例:
5 1000
输出样例:
12
题意分析:拓展为三维矩阵,找到一个矩阵A,使得
分析得:
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int N=3;
int n,m;
void mul(int c[],int a[],int b[][N])
{
int temp[N]={0};
for(int i=0;i>=1;
}
cout<
这样看矩阵乘法是很好理解的,但是万万没想到,它的应用出现得猝不及防,真的很难想到原来矩阵乘法还可以这样用
垒骰子1217. 垒骰子 - AcWing题库
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模
的结果。
输入格式
第一行包含两个整数 n,m,分别表示骰子的数目和排斥的组数。
接下来 m 行,每行两个整数 a,b,表示 a 和 b 数字不能紧贴在一起。
输出格式
共一个数,表示答案模
的结果。
数据范围
1 ≤ n ≤ 10^9,
1 ≤ m ≤ 36,
1 ≤ a , b ≤6
输入样例:
2 1
1 2
输出样例:
544
分析:这道题得正解是dp + 矩阵乘法,对于两个互斥得骰子来说有0种摆放方案,否则有四种(不同方向)的摆放方案。
状态表示:f [ i ][ j ] 表示前 i 个骰子且第 i 个骰子数字 j 朝上
状态转移:状态转移![f[i][j] = f[i - 1][k] * 4](http://img.e-com-net.com/image/info8/0f07bb4fc5c04be895a2661320190981.png)
(侧面可旋转四次) (k从1到6)
关键一步:需要从![\begin{Bmatrix} f[n][1], &f[n][2] ,&f[n][3], &f[n][4], &f[n][5], &f[n][6] \end{Bmatrix}](http://img.e-com-net.com/image/info8/6f0939326fb743c8bac281f2c97b7c0d.png)
转为![\begin{Bmatrix} f[n+1][1], &f[n+1][2], &f[n+1][3], &f[n+1][4] , &f[n+1][5], &f[n+1][6] \end{Bmatrix}](http://img.e-com-net.com/image/info8/4dfa5c39170942778ab25e59bd910202.png)
矩阵构造需要根据题目给出的互斥组来决定
具体题解移步AcWing 1217. 垒骰子 - AcWing,不得不说大佬太强了
你可能感兴趣的:(矩阵,算法,矩阵乘法)
- JS宏实例:数据透视工具的制作(三)
jackispy
JS宏实例javascript前端java
数据透视工具的制作(二)中详细展示了窗体设计思路及想要实现的功能,在本节中,将完成该工具中的核心计算代码,如分组求和、计数、累乘等的实现方式。在这里,我们可以构思两个类:TablePivot:主要用于管理数据矩阵,包括自动识别列数据类型,以及实现数据分组功能。GroupBy:对分组后的数据进行各种统计操作,例如求和、计数、求平均值等。一、TablePivot类1、示例代码classTablePiv
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- flutter pigeon gomobile 插件中使用go工具类
yujunlong3919
fluttergolangswiftkotlin
文章目录为什么flutter要用go写工具类1.下载pigeon插件模版2.编写go代码3.生成greeting.aar,Greeting.xcframework4.ios5.android6.dart中使用为什么flutter要用go写工具类在Flutter应用中,有些场景涉及到大量的计算,比如复杂的加密算法、数据压缩/解压缩或者图形处理中的数学计算等1.下载pigeon插件模版base_plu
- muzero 算法原理
战神哥
Muzero算法是一种通用的强化学习算法,它可以在没有预先设定策略的情况下进行学习。它通过模拟整个游戏进程来自我学习,并通过回报函数来评估每一步的决策。Muzero算法的核心部分是一个叫做模型的神经网络,它会对游戏的状态进行预测,预测未来的游戏状态。另一部分是策略网络,它会根据当前状态预测每一步的最优决策。Muzero算法通过不断地训练模型和策略网络,来提高它们的准确性,从而使得机器学到了如何玩游
- LLM与知识图谱融合:智能运维知识库构建
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着信息技术的飞速发展,IT运维管理面临着越来越大的挑战。海量的设备、复杂的网络环境、日益增长的数据量,使得传统的运维方式难以满足需求。为了提高运维效率和质量,智能运维应运而生。智能运维的核心是将人工智能技术应用于运维领域,通过机器学习、深度学习等算法,实现自动化、智能化的运维管理。其中,大语言模型(LLM)和知识图谱是两个重要的技术方向。LLM能够理解和生成自然语言,可以用于构建智能
- LQB(4)-python-DFS搜索
AAA顶置摸鱼
蓝桥杯python组深度优先算法python蓝桥杯
前言DFS即深度优先搜索(Depth-FirstSearch),是一种用于遍历或搜索树或图的算法,有三种核心的应用场景(基础遍历、回溯、剪枝)。一、DFS-基础遍历1.核心原理深度优先搜索(DFS)是一种遍历或搜索树/图的算法,优先沿着一条路径尽可能深入,直到无法继续再回溯。实现方式:递归:隐式利用系统调用栈。栈模拟:显式使用栈数据结构。2.代码实现(1)递归实现(树结构)classTreeNod
- sklearn.ConfusionMatrixDisplay可视化混淆矩阵
Cachel wood
python机器学习和数据挖掘sklearn矩阵人工智能python机器学习vue.jsjava
文章目录ConfusionMatrixDisplay详细解释更多定制化ConfusionMatrixDisplayConfusionMatrixDisplay是scikit-learn库中用于可视化混淆矩阵的一个实用工具。混淆矩阵是一种常用的评估分类模型性能的工具,它可以直观地展示模型在各个类别上的预测结果与真实标签之间的关系。下面详细介绍如何使用ConfusionMatrixDisplay进行混
- AI编剧系统深度解析:从算法架构到影视工业化应用实战
Coderabo
DeepSeekR1模型企业级应用人工智能算法
媒体娱乐行业革命:AI编剧创意辅助系统架构解析与实战应用一、行业背景与技术架构在流媒体内容需求激增的当下,传统编剧模式面临产能瓶颈。AI编剧创意辅助系统通过自然语言处理(NLP)、生成对抗网络(GAN)和知识图谱技术,构建了包含剧本生成、情节优化、角色塑造等模块的智能创作平台。核心架构分为:知识图谱层:整合影视剧本数据库(IMSDb)、维基百科等结构化数据NLP处理层:基于Transformer的
- 如果MLlib 中没有所需要的模型,如何使用 Spark 进行分布式训练?
是纯一呀
WSLDockerAIspark分布式mllib
如果MLlib中没有你所需要的模型,并且不打算结合更强大的框架(如TensorFlowOnSpark或Horovod),仍然可以使用Spark进行分布式训练,但需要手动处理训练任务的分配、数据准备、模型训练、结果合并和模型更新等过程。模型训练阶段将模型的训练任务分配到Spark集群的各个节点。数据并行:每个节点会处理数据的不同部分,并计算该部分的梯度或模型参数。自定义算法:如果使用的是自定义算法(
- 【分布式理论12】事务协调者高可用:分布式选举算法
roman_日积跬步-终至千里
分布式架构分布式算法
文章目录一、分布式系统中事务协调的问题二、分布式选举算法1.Bully算法2.Raft算法3.ZAB算法三、小结与比较一、分布式系统中事务协调的问题在分布式系统中,常常有多个节点(应用)共同处理不同的事务和资源。前文【分布式理论9】分布式协同:分布式系统进程互斥与互斥算法【分布式理论10】分布式协同:分布式互斥算法最佳实现:分布式锁的原理与实现【分布式理论11】分布式协同之分布式事务中介绍了分布式
- 设计模式-模板方法实现
阿绵
设计模式java开发语言
文章目录模式结构模式特点示例代码输出结果关键点解析模式的优缺点使用场景总结模板方法模式(TemplateMethodPattern)是一种行为型设计模式,它定义了一个操作中的算法骨架,而将某些步骤的实现延迟到子类中。通过这种方式,模板方法模式可以让子类在不改变算法结构的情况下,重新定义算法中的某些步骤模式结构模板方法模式的结构包括以下几个关键部分:抽象类(AbstractClass):定义算法的骨
- 数据库基础以及 MySQL 知识点
阿绵
计算机基础数据库mysql
文章目录1、基本概念2、主键和外键的区别2.1、使用外键的优劣3、数据库范式4、drop、delete与truncate区别?5、MySQL1、基础概念2、存储引擎2.1、InnoDB和MyISAM区别2.2、InnoDB如何保持事务的四大特性(实现事务的原理)3、锁机制与InnoDB锁算法3.1、表级锁和行级锁对比4、事务4.1、ACID特性4.2、并发事务带来的问题4.3、事务隔离级别1、基本
- yolov8人脸识别与脸部关键点检测(代码+原理)
QQ_1309399183
计算机视觉实战项目集锦YOLO人工智能人脸识别yolo人脸检测
YOLOv8脸部识别是一个基于YOLOv8算法的人脸检测项目,旨在实现快速、准确地检测图像和视频中的人脸。该项目是对YOLOv8算法的扩展和优化,专门用于人脸检测任务。YOLOv8是一种基于深度学习的目标检测算法,通过将目标检测问题转化为一个回归问题,可以实现实时的目标检测。YOLOv8Face项目在YOLOv8的基础上进行了改进,使其更加适用于人脸检测。以下是YOLOv8Face项目的一些特点和
- 基于Python的搜索引擎的设计与实现
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
搜索引擎,Python,爬虫,自然语言处理,信息检索,索引,算法,数据库1.背景介绍在信息爆炸的时代,海量数据无处不在,高效地获取所需信息变得至关重要。搜索引擎作为信息获取的桥梁,扮演着不可或缺的角色。传统的搜索引擎往往依赖于庞大的服务器集群和复杂的算法,对资源消耗较大,且难以满足个性化搜索需求。基于Python的搜索引擎设计,则凭借Python语言的易学易用、丰富的第三方库和强大的社区支持,为开
- 27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?
程序员yt
java机器学习开发语言
今天给大家分享的是一位粉丝的提问,27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:211建筑本科,22年毕业后gap一年转码去了英国读的QS100的it的水硕(24年12月份毕业),转码后对就业形势认知不足,时间全花在课业上,八股文和算法准备的不充足,秋招算是惨败。读研
- 分布式理论与分布式算法
红衣女妖仙
springcloud分布式分布式定理分布式算法
分布式定义、主要目标、优缺点、与集中式区别;分布式CAP定理、PACELC理论、BASE理论的核心观点、应用场景等;分布式算法如Paxos算法、Raft算法、Gossip算法、两阶段提交(2PC)、三阶段提交(3PC)、一致性哈希算法、Bully算法、Chord算法等算法的核心思想、角色、算法过程、特性、应用场景和变种等。——2025年2月3日甲辰年正月初六立春目录1分布式1.1分布式定义1.
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- NFC碰一碰发视频源码高质量矩阵宣传视频,支持OEM
余~~18538162800
python开发语言音视频
一、引言在当今竞争激烈的商业环境中,创新的拓客方式对于企业的生存与发展至关重要。NFC(NearFieldCommunication)碰一碰技术的出现,为营销领域带来了新的机遇。结合视频传播的强大影响力,NFC碰一碰发视频拓客系统应运而生。本文将深入探讨该系统的源码搭建过程,并详细阐述如何实现对OEM(原始设备制造商)的支持,为开发者和企业提供一套全面的技术指南。二、系统架构设计(一)NFC交互层
- 【深度学习】学习率调度策略
黑白交界
深度学习学习深度学习
什么是学习率可以理解为模型在每一次迭代中的模型更新调整的幅度,“学习”新信息的速度。学习率定义了模型权重(参数)在梯度下降或其他优化算法中的更新步伐。较大的学习率意味着在每次参数更新时,模型会进行更大幅度的调整,而较小的学习率则意味着细致的、渐进的调整。适当的学习率可以帮助模型跳出局部最优解。当使用较大的学习率时,模型有可能跨越一些小的局部最优,从而找到全局最优解,但也有可能错过全局最优。因此,在
- 【核心算法篇七】《DeepSeek异常检测:孤立森林与AutoEncoder对比》
再见孙悟空_
「2025DeepSeek技术全景实战」算法分布式docker计算机视觉人工智能自然语言处理DeepSeek
大家好,今天我们来深入探讨一下《DeepSeek异常检测:孤立森林与AutoEncoder对比》这篇技术博客。我们将从核心内容、原理、应用场景等多个方面进行详细解析,力求让大家对这两种异常检测方法有一个全面而深入的理解。一、引言在数据科学和机器学习领域,异常检测(AnomalyDetection)是一个非常重要的任务。它的目标是从数据集中识别出那些与大多数数据显著不同的异常点。这些异常点可能是由于
- 【c++】容器:vector、list、map
大姨妈V
c++【c++从入门到精通】学习笔记
【c++】容器1.容器2.顺序容器3.向量4.双向链表5.关联容器6.映射参考:《c++从入门到精通》人民邮电出版社标准模板库STL的c++最有特色、最实用的部分之一。标准模板库包含了容器类、迭代器和算法三部分。容器:容器就是可以用于存放各种类型数据的数据结构。迭代器:迭代器可依次存取容器中的元素,在C++中称迭代器为指针,它们提供了访问容器、序列中每个元素的方法。算法:是用来操作容器中的元素的函
- STL-vector,set,string,map,queue,priority_queue,stack,pair算法笔记
cloudless_sky
STLc++stl
STL:standardtemplatelibrary标准模板库,封装了很多实用的容器。(一)vectorvector是一个容器。是个类。底层数据结构是数组。vector:向量,变长数组,即“长度根据需要而自动改变的数组”。使用前提:#includeusingnamespacestd;1、vector定义vectorname;以上是长度可以根据需要变化的一位数组,typename可以是任何基本类型
- Java开发实习面试笔试题(含答案)
小钊(求职中)
java面试开发语言springspringbootmaventomcat
在广州一家中大公司面试(BOSS标注是1000-9999人,薪资2-3k),招聘上写着Java开发,基本没有标注前端要求,但是到场知道是前后端分离人不分离。开始先让你做笔试(12道问答+4道SQL题),接着面试也是八股文之类的,没有问项目,没有做算法,现分享笔试和面试题目给大家做参考。(基础的没复习忘了不会,只会几道感觉已经寄了,最重要的是前端基本不会)一、笔试内容1.Java有哪些数据类型,什么
- 深度学习torch之19种优化算法(optimizer)解析
@Mr_LiuYang
论文阅读深度学习optimizerAdam学习率调整优化算法
提示:有谬误请指正摘要本博客详细介绍了多种常见的深度学习优化算法,包括经典的LBFGS、Rprop、Adagrad、RMSprop、Adadelta、ASGD、Adamax、Adam、AdamW、NAdam、RAdam以及SparseAdam等,通过对这些算法的公式和参数说明进行详细解析,博客旨在为机器学习工程师和研究人员提供清晰的理论指导,帮助读者选择合适的优化算法提升模型训练效率。父类定义Op
- ranges::set_intersection set_union set_difference set_symmetric_difference
大树青云
C++20C++set_union
std::ranges::set_intersection:是C++20引入的一个算法,用于计算两个已排序范围的交集。它将两个范围的交集元素复制到输出范围中。std::ranges::set_intersection用于计算两个已排序范围的交集。它将两个范围的交集元素复制到输出范围中。注意事项输入范围必须已排序。目标范围必须有足够空间存储交集结果。交集结果默认按升序排列。若元素重复,交集次数取两范
- 深度优先探索
^O^凡人多烦事
深度优先算法
DFS:时间复杂度:一位数组:O(n)二维数组+标记:O(n^2),有时候还可能使O(2^n),总而言之DFS的时间复杂度比较高。(个人认为)深度优先搜索算法(DFS)原理:深度优先搜索(DepthFirstSearch,DFS)是一种用于遍历或搜索树或图的算法。该方法从根节点(选择任意一个顶点作为起始节点,在无向图中适用)开始,尽可能深地沿着每条分支进行探索直到不能再前进为止;之后回退并重复这一
- 《机器学习数学基础》补充资料:求解线性方程组的克拉默法则
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。1.线性方程组的解位于一条直线不失一般性,这里讨论三维空间的情况,对于多维空间,可以由此外推,毕竟三维空间便于想象和作图说明。设矩阵A=[124135]\pmb{A}
- 常用的高性能计算工具有哪些
这题有点难度
人工智能学习
在当今数字化时代,高性能计算(HPC)已成为推动科学、工程、技术以及商业创新的核心力量。无论是模拟宇宙的起源、设计新型航空器,还是训练复杂的人工智能模型,HPC都扮演着不可或缺的角色。本文将深入探讨高性能计算的定义、其背后的强大工具,以及它们如何助力各领域的突破性发展。一、高性能计算:定义与意义高性能计算(HPC)是一种利用超级计算机或大规模集群来处理复杂计算任务的技术。它通过并行计算和优化算法,
- 关于滑动窗口算法--最小替换字串长度
幼儿园口算大王
算法java数据结构滑动窗口
个人觉得日常遇到的关于滑动窗口的算法题主要分两种:固定窗口大小的滑动窗口在固定窗口大小的滑动窗口问题中,窗口的大小是预先定义好的,不会改变。这种类型的问题是相对简单的,因为一旦确定了窗口的大小,就可以直接遍历数组或列表,每次移动窗口一个元素的位置。常见的问题包括:最大/最小子数组和:给定一个数组和一个固定大小的窗口,找到所有可能的窗口的最大/最小和。窗口内元素的统计:例如,统计窗口内奇数或偶数元素
- 只能说算法做题全凭运气
幼儿园口算大王
算法java开发语言
问题描述在一款多人游戏中,每局比赛需要多个玩家参与。如果发现两名玩家至少一起玩过两局比赛,则可以认为这两名玩家互为队友。现在你有一份玩家(通过玩家ID标识)和比赛局次(通过比赛ID标识)的历史记录表,目标是帮助某位指定玩家找到所有符合条件的队友。例如样例1,已知以下比赛历史记录:玩家ID游戏ID11121321243241425253我们需要帮助ID为1的玩家找到所有至少与其一起玩过两次比赛的队友
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi