c语言汇编输出字符串,C语言和汇编如何互相调用?嵌入式工程师必须掌握

c语言汇编输出字符串,C语言和汇编如何互相调用?嵌入式工程师必须掌握_第1张图片

一、gcc 内联汇编

内联汇编即在C中直接使用汇编语句进行编程,使程序可以在C程序中实现C语言不能完成的一些工作,例如,在下面几种情况中必须使用内联汇编或嵌入型汇编。

程序中使用饱和算术运算(Saturating Arithmetic)

程序需要对协处理器进行操作

在C程序中完成对程序状态寄存器的操作

格式:

__asm__ __volatile__("asm code"

:output

:input

:changed registers);

asm或__asm__开头,小括号+分号,括号内容写汇编指令。指令+\n\t 用双引号引上。

参数

「asm code」主要填写汇编代码:

"mov r0, r0\n\t"

"mov r1,r1\n\t"

"mov r2,r2"

「output(asm->C)」用于定义输出的参数,通常只能是变量:

:"constraint"(variable)

"constraint"用于定义variable的存放位置:

r 表示使用任何可用的寄存器

m 表示使用变量的内存地址

+ 可读可写

= 只写

& 表示该输出操作数不能使用输入部分使用过的寄存器,只能用"+&"或"=&"的方式使用

「input(C->asm)」用于定义输入的参数,可以是变量也可以是立即数:

:"constraint"(variable/immediate)

"constraint"用于定义variable的存放位置:

r 表示使用任何可用的寄存器(立即数和变量都可以)

m 表示使用变量的内存地址

i 表示使用立即数

Note:

使用__asm__和__volatile__表示编译器将不检查后面的内容,而是直接交给汇编器。

如果希望编译器为你优化,__volatile__可以不加

没有asm code也不能省略""

没有前面的和中间的部分,不可以相应的省略:

没有changed 部分,必须相应的省略:

最后的;不能省略,对于C语言来说这是一条语句

汇编代码必须放在一个字符串内,且字符串中间不能直接按回车换行,可以写成多个字符串,注意中间不能有任何符号,这样就会将两个字符串合并为一个

指令之间必须要换行,还可以使用\t使指令在汇编中保持整齐

举例

例1:无参数,无返回值 这种情况,output和input可以省略:

asm

( //汇编指令

"mrs r0,cpsr     \n\t"

"bic r0,r0,#0x80 \n\t"

"msr cpsr,r0     \n\t"

);

例2:有参数 ,有返回值 让内联汇编做加法运算,求a+b,结果存在c中

inta =100, b =200, c =0;

asm

(

"add %0,%1,%2\n\t"

: "=r"(c)

: "r"(a),"r"(b)

: "memory"

);

%0 对应变量c %1 对应变量a %2 对应变量b

例3:有参数 2 ,有返回值

让内联汇编做加法运算,求a+b,结果存在sum中,把a-b的存在d中

asm volatile

(

"add %[op1],%[op2],%[op3]\n\t"

"sub %[op4],%[op2],%[op3]\n\t"

:[op1]"=r"(sum),[op4]"=r"(d)

:[op2]"r"(a),[op3]"r"(b)

:"memory"

);

%0 对应变量c %1 对应变量a %2 对应变量b

三、ATPCS规则:(ARM、thumber程序调用规范)

为了使单独编译的C语言程序和汇编程序之间能够相互调用,必须为子程序之间的调用规定一定的规则.ATPCS就是ARM程序和THUMB程序中子程序调用的基本规则。

基本ATPCS规定了在子程序调用时的一些基本规则,包括下面3方面的内容:

各寄存器的使用规则及其相应的名称。

数据栈的使用规则。

参数传递的规则。

1. 寄存器的使用必须满足下面的规则:

1)子程序间通过寄存器R0一R3来传递参数,这时,寄存器R0~R3可以记作A1-A4。被调用的子程序在返回前无需恢复寄存器R0~R3的内容。

2)在子程序中,使用寄存器R4~R11来保存局部变量.这时,寄存器 R4 ~ R11可以记作V1 ~ V8。如果在子程序中使用到了寄存器V1~V8中的某些寄存器,子程序进入时必须保存这些寄存器的值,在返回前必须恢复这些寄存器的值;对于子程序中没有用到的寄存器则不必进行这些操作。在Thumb程序中,通常只能使用寄存器R4~R7来保存局部变量。

3)寄存器R12用作过程调用时的临时寄存器(用于保存SP,在函数返回时使用该寄存器出栈), 记作ip。在子程序间的连接代码段中常有这种使用规则。

4)寄存器R13用作数据栈指针,记作sp。在子程序中寄存器R13不能用作其他用途。寄存器sp在进入子程序时的值和退出子程序时的值必须相等。

5)寄存器R14称为连接寄存器,记作lr。它用于保存子程序的返回地址。如果在子程序中保存了返回地址,寄存器R14则可以用作其他用途。

6)寄存器R15是程序计数器,记作pc。它不能用作其他用途。

ATPCS下ARM寄存器的命名:

c语言汇编输出字符串,C语言和汇编如何互相调用?嵌入式工程师必须掌握_第2张图片

2、堆栈使用规则:

ATPCS规定堆栈为FD类型,即满递减堆栈。并且堆栈的操作是8字节对齐。

而对于汇编程序来说,如果目标文件中包含了外部调用,则必须满足以下条件:

外部接口的数据栈一定是8位对齐的,也就是要保证在进入该汇编代码后,直到该汇编程序调用外部代码之间,数据栈的栈指针变化为偶数个字;

在汇编程序中使用PRESERVE8伪操作告诉连接器,本汇编程序是8字节对齐的.

3、参数的传递规则:

根据参数个数是否固定,可以将子程序分为参数个数固定的子程序和参数个数可变的子程序.这两种子程序的参数传递规则是不同的.

1.参数个数可变的子程序参数传递规则

对于参数个数可变的子程序,当参数不超过4个时,可以使用寄存器R0~R3来进行参数传递,当参数超过4个时,还可以使用数据栈来传递参数.

在参数传递时,将所有参数看做是存放在连续的内存单元中的字数据。然后,依次将各名字数据传送到寄存器R0,R1,R2,R3; 如果参数多于4个,将剩余的字数据传送到数据栈中,入栈的顺序与参数顺序相反,即最后一个字数据先入栈.

按照上面的规则,一个浮点数参数可以通过寄存器传递,也可以通过数据栈传递,也可能一半通过寄存器传递,另一半通过数据栈传递。

举例:

void func(a,b,c,d,e)

a -- r0

b -- r1

c -- r2

d -- r3

e -- 栈

2.参数个数固定的子程序参数传递规则

对于参数个数固定的子程序,参数传递与参数个数可变的子程序参数传递规则不同,如果系统包含浮点运算的硬件部件。

浮点参数将按照下面的规则传递: (1)各个浮点参数按顺序处理; (2)为每个浮点参数分配FP寄存器;

分配的方法是,满足该浮点参数需要的且编号最小的一组连续的FP寄存器.第一个整数参数通过寄存器R0~R3来传递,其他参数通过数据栈传递.

3、子程序结果返回规则

1.结果为一个32位的整数时,可以通过寄存器R0返回.

2.结果为一个64位整数时,可以通过R0和R1返回,依此类推.

3.对于位数更多的结果,需要通过调用内存来传递.

举例:

使用r0 接收返回值

intfunc1(intm,intn)

m  -- r0

n  -- r1

返回值给 r0

「为什么有的编程规范要求自定义函数的参数不要超过4个?」答:因为参数超过4个就需要压栈退栈,而压栈退栈需要增加很多指令周期。对于参数比较多的情况,我们可以把数据封装到结构体中,然后传递结构体变量的地址。

四、C语言和汇编相互调用

C和汇编相互调用要特别注意遵守相应的ATPCS规则。

1. C调用汇编

例1:c调用汇编文件中函数带返回值 简化代码如下,代码架构可以参考《7. 从0开始学ARM-GNU伪指令、代码编译,lds使用》。

;.asm

add:

addr2,r0,r1

mov r0,r2

MOV pc, lr

main.c

externintadd(inta,intb);

printf("%d \n",add(2,3));

a->r0,b->r1

返回值通过r0返回计算结果给c代码

例2,用汇编实现一个strcopy函数

;.asm

.globalstrcopy

strcopy:      ;R0指向目的字符串 ;R1指向源字符串

LDRB R2, [R1], #1   ;加载字字符并更新源字符串指针地址

STRB R2, [R0], #1   ;存储字符并更新目的字符串指针地址

CMP R2, #0   ;判断是否为字符串结尾

BNE strcopy   ;如果不是,程序跳转到strcopy继续循环

MOV pc, lr   ;程序返回

//.c

#include 

extern void strcopy(char* des, constchar* src);

intmain(){

const char* srcstr ="yikoulinux";

chardesstr[]="test";

strcopy(desstr, srcstr);

return0;

}

2. 汇编调用C

//.c

intfcn(inta,intb ,intc,intd,inte)

{

returna+b+c+d+e;

}

;.asm ;

.text .global_start

_start:

STR lr, [sp, #-4]! ;保存返回地址lr

ADDR1, R0, R0 ;计算2*i(第2个参数)

ADDR2, R1, R0 ;计算3*i(第3个参数)

ADDR3, R1, R2 ;计算5*i

STR R3, [SP, #-4]! ;第5个参数通过堆栈传递

ADDR3, R1, R1 ;计算4*i(第4个参数)

BL fcn ;调用C程序

ADDsp, sp, #4 ;从堆栈中删除第五个参数

.end

假设程序进入f时,R0中的值为i ;

intf(inti){

returnfcn(i, 2*i, 3*i, 4*i, 5*i);

}

五、内核实例

为了让读者有个更加深刻的理解, 以内核中的例子为例:

arch/arm/kernel/setup.c

void notrace cpu_init(void)

{

unsigned intcpu = smp_processor_id();----获取CPU ID

struct stack *stk = &stacks[cpu];----获取该CPU对于的irq abt和und的stack指针

……

#ifdef CONFIG_THUMB2_KERNEL

#define PLC    "r"----Thumb-2下,msr指令不允许使用立即数,只能使用寄存器。

#else

#define PLC    "I"

#endif    __asm__ (

"msr    cpsr_c, %1\n\t"----让CPU进入IRQ mode

"add    r14, %0, %2\n\t"----r14寄存器保存stk->irq

"mov    sp, r14\n\t"----设定IRQ mode的stack为stk->irq

"msr    cpsr_c, %3\n\t"

"add    r14, %0, %4\n\t"

"mov    sp, r14\n\t"----设定abt mode的stack为stk->abt

"msr    cpsr_c, %5\n\t"

"add    r14, %0, %6\n\t"

"mov    sp, r14\n\t"----设定und mode的stack为stk->und

"msr    cpsr_c, %7"---回到SVC mode

:----上面是code,下面的output部分是空的

: "r"(stk),----对应上面代码中的%0

PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),----对应上面代码中的%1

"I"(offsetof(struct stack, irq[0])),----对应上面代码中的%2

PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),----以此类推,下面不赘述

"I"(offsetof(struct stack, abt[0])),

PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),

"I"(offsetof(struct stack, und[0])),

PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)

: "r14");----上面是input操作数列表,r14是要clobbered register列表

}

【编辑推荐】

【责任编辑:姜华 TEL:(010)68476606】

点赞 0

你可能感兴趣的:(c语言汇编输出字符串)