平台:rk3399 (与平台关系不大)
内核 :linux5.15
下一个linux5.15的内核,编译的时候
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- -j6 rk3399-rock960.img
目标rk3399-rock960.img 需要在arch/arm64/boot/dts/rockchip/ 目录下存在rk3399-rock960.dts文件 ,如果不存在,可以使用其他的dts文件作为目标。
make: *** No rule to make target 'rk3399-rock960.img'. Stop.
解决1:
修改arch/arm64/Makefile,在文件末尾增加一段(其他的内容不变)
MAKE_MODULES ?= y
%.img:
ifeq ("$(CONFIG_MODULES)$(MAKE_MODULES)$(srctree)","yy$(objtree)")
$(Q)$(MAKE) rockchip/$*.dtb Image.lz4 modules
else
$(Q)$(MAKE) rockchip/$*.dtb Image.lz4
endif
$(Q)$(srctree)/scripts/mkimg --dtb $*.dtbCLEAN_DIRS += out
CLEAN_FILES += boot.img kernel.img resource.img zboot.img
再执行上面的make命令,该错误就没有了。
解决:
从原(rk3399)sdk的内核中拷贝过来,这是个脚本文件。
cp ../kernel/scripts/mkimg scripts/
shell脚本内容如下:
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
# Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd.
set -e
usage() {
cat >&2 << USAGE
usage: $0 [-h] --dtb DTB
optional arguments:
-h, --help show this help message and exit
--dtb DTB the dtb file name
USAGE
}
# Parse command-line arguments
while [ $# -gt 0 ]; do
case $1 in
--dtb)
DTB=$2
shift 2
;;
-h)
usage
exit 0
;;
--help)
usage
exit 0
;;
*)
shift
;;
esac
done
srctree=${srctree-"."}
objtree=${objtree-"."}
if [ "${ARCH}" == "" ]; then
if [ "$($srctree/scripts/config --state CONFIG_ARM)" == "y" ]; then
ARCH=arm
else
ARCH=arm64
fi
fi
LOGO_PATH=${srctree}/logo.bmp
[ -f ${LOGO_PATH} ] && LOGO=logo.bmp
LOGO_KERNEL_PATH=${srctree}/logo_kernel.bmp
[ -f ${LOGO_KERNEL_PATH} ] && LOGO_KERNEL=logo_kernel.bmp
KERNEL_IMAGE_PATH=${objtree}/arch/${ARCH}/boot/Image
KERNEL_IMAGE_ARG="--kernel ${KERNEL_IMAGE_PATH}"
if [ "${ARCH}" == "arm" ]; then
DTB_PATH=${objtree}/arch/arm/boot/dts/${DTB}
ZIMAGE=zImage
else
DTB_PATH=${objtree}/arch/arm64/boot/dts/rockchip/${DTB}
ZIMAGE=Image.lz4
fi
KERNEL_ZIMAGE_PATH=${objtree}/arch/${ARCH}/boot/${ZIMAGE}
KERNEL_ZIMAGE_ARG="--kernel ${KERNEL_ZIMAGE_PATH}"
if [ ! -f ${DTB_PATH} ]; then
echo "No dtb" >&2
usage
exit 1
fi
OUT=out
ITB=${BOOT_IMG}
ITS=${OUT}/boot.its
MKIMAGE=${MKIMAGE-"mkimage"}
MKIMAGE_ARG="-E -p 0x800"
make_boot_img()
{
RAMDISK_IMG_PATH=${objtree}/ramdisk.img
[ -f ${RAMDISK_IMG_PATH} ] && RAMDISK_IMG=ramdisk.img && RAMDISK_ARG="--ramdisk ${RAMDISK_IMG_PATH}"
${srctree}/scripts/mkbootimg \
${KERNEL_IMAGE_ARG} \
${RAMDISK_ARG} \
--second resource.img \
-o boot.img && \
echo " Image: boot.img (with Image ${RAMDISK_IMG} resource.img) is ready";
${srctree}/scripts/mkbootimg \
${KERNEL_ZIMAGE_ARG} \
${RAMDISK_ARG} \
--second resource.img \
-o zboot.img && \
echo " Image: zboot.img (with ${ZIMAGE} ${RAMDISK_IMG} resource.img) is ready"
}
make_boot_multi_dtb_img()
{
RAMDISK_IMG_PATH=${objtree}/ramdisk.img
[ -f ${RAMDISK_IMG_PATH} ] && RAMDISK_IMG=ramdisk.img && RAMDISK_ARG="--ramdisk ${RAMDISK_IMG_PATH}"
${srctree}/scripts/mkbootimg \
${KERNEL_IMAGE_ARG} \
${RAMDISK_ARG} \
--second resource_multi_dtb.img \
-o boot.img && \
echo " Image: boot.img (with Image ${RAMDISK_IMG} resource_multi_dtb.img) is ready";
${srctree}/scripts/mkbootimg \
${KERNEL_ZIMAGE_ARG} \
${RAMDISK_ARG} \
--second resource_multi_dtb.img \
-o zboot.img && \
echo " Image: zboot.img (with ${ZIMAGE} ${RAMDISK_IMG} resource_multi_dtb.img) is ready"
}
repack_boot_img()
{
${srctree}/scripts/repack-bootimg \
--boot_img ${BOOT_IMG} --out ${OUT} \
${KERNEL_IMAGE_ARG} \
--second resource.img \
--dtb ${DTB_PATH} \
-o boot.img &&
echo " Image: boot.img (${BOOT_IMG} + Image) is ready";
${srctree}/scripts/repack-bootimg \
--boot_img ${BOOT_IMG} --out ${OUT} \
${KERNEL_ZIMAGE_ARG} \
--second resource.img \
--dtb ${DTB_PATH} \
-o zboot.img && \
echo " Image: zboot.img (${BOOT_IMG} + ${ZIMAGE}) is ready"
}
repack_multi_dtb_boot_img()
{
${srctree}/scripts/repack-bootimg \
--boot_img ${BOOT_IMG} --out ${OUT} \
${KERNEL_IMAGE_ARG} \
--second resource_multi_dtb.img \
--dtb ${DTB_PATH} \
-o boot.img &&
echo " Image: boot.img (${BOOT_IMG} + Image + resource_multi_dtb) is ready";
${srctree}/scripts/repack-bootimg \
--boot_img ${BOOT_IMG} --out ${OUT} \
${KERNEL_ZIMAGE_ARG} \
--second resource_multi_dtb.img \
--dtb ${DTB_PATH} \
-o zboot.img && \
echo " Image: zboot.img (${BOOT_IMG} + ${ZIMAGE}) is ready"
}
check_mkimage()
{
MKIMAGE=$(type -p ${MKIMAGE} || true)
if [ -z "${MKIMAGE}" ]; then
# Doesn't exist
echo '"mkimage" command not found - U-Boot images will not be built' >&2
exit 1;
fi
}
unpack_itb()
{
rm -rf ${OUT}
mkdir -p ${OUT}
for NAME in $(fdtget -l ${ITB} /images)
do
# generate image
NODE="/images/${NAME}"
OFFS=$(fdtget -ti ${ITB} ${NODE} data-position)
SIZE=$(fdtget -ti ${ITB} ${NODE} data-size)
if [ -z ${OFFS} ]; then
continue;
fi
if [ ${SIZE} -ne 0 ]; then
dd if=${ITB} of=${OUT}/${NAME} bs=${SIZE} count=1 skip=${OFFS} iflag=skip_bytes >/dev/null 2>&1
else
touch ${OUT}/${NAME}
fi
done
[ ! -f ${OUT}/kernel ] && echo "FIT ${ITB} no kernel" >&2 && exit 1 || true
}
gen_its()
{
TMP_ITB=${OUT}/boot.tmp
# add placeholder
cp ${ITB} ${TMP_ITB}
for NAME in $(fdtget -l ${ITB} /images); do
fdtput -t s ${TMP_ITB} /images/${NAME} data "/INCBIN/(${NAME})"
done
dtc -I dtb -O dts ${TMP_ITB} -o ${ITS} >/dev/null 2>&1
rm -f ${TMP_ITB}
# fixup placeholder: data = "/INCBIN/(...)"; -> data = /incbin/("...");
sed -i "s/\"\/INCBIN\/(\(.*\))\"/\/incbin\/(\"\1\")/" ${ITS}
# remove
sed -i "/memreserve/d" ${ITS}
sed -i "/timestamp/d" ${ITS}
sed -i "/data-size/d" ${ITS}
sed -i "/data-position/d" ${ITS}
sed -i "/value/d" ${ITS}
sed -i "/hashed-strings/d" ${ITS}
sed -i "/hashed-nodes/d" ${ITS}
sed -i "/signer-version/d" ${ITS}
sed -i "/signer-name/d" ${ITS}
}
gen_itb()
{
[ -f ${OUT}/fdt ] && cp -a ${DTB_PATH} ${OUT}/fdt && FDT=" + ${DTB}"
[ -f ${OUT}/resource ] && cp -a resource.img ${OUT}/resource && RESOURCE=" + resource.img"
COMP=$(fdtget ${ITB} /images/kernel compression)
case "${COMP}" in
gzip) EXT=".gz";;
lz4) EXT=".lz4";;
bzip2) EXT=".bz2";;
lzma) EXT=".lzma";;
lzo) EXT=".lzo";;
esac
cp -a ${KERNEL_IMAGE_PATH}${EXT} ${OUT}/kernel && \
${MKIMAGE} ${MKIMAGE_ARG} -f ${ITS} boot.img >/dev/null && \
echo " Image: boot.img (FIT ${BOOT_IMG} + Image${EXT}${FDT}${RESOURCE}) is ready";
if [ "${EXT}" == "" ] && [ -f ${KERNEL_ZIMAGE_PATH} ]; then
cp -a ${KERNEL_ZIMAGE_PATH} ${OUT}/kernel && \
${MKIMAGE} ${MKIMAGE_ARG} -f ${ITS} zboot.img >/dev/null && \
echo " Image: zboot.img (FIT ${BOOT_IMG} + zImage${FDT}${RESOURCE}) is ready";
fi
}
repack_itb()
{
check_mkimage
unpack_itb
gen_its
gen_itb
}
# Create U-Boot FIT Image use ${BOOT_ITS}
make_fit_boot_img()
{
ITS=${OUT}/boot.its
check_mkimage
mkdir -p ${OUT}
rm -f ${OUT}/fdt ${OUT}/kernel ${OUT}/resource ${ITS}
cp -a ${BOOT_ITS} ${ITS}
cp -a ${DTB_PATH} ${OUT}/fdt
cp -a ${KERNEL_ZIMAGE_PATH} ${OUT}/kernel
cp -a resource.img ${OUT}/resource
if [ "${ARCH}" == "arm64" ]; then
sed -i -e 's/arch = ""/arch = "arm64"/g' -e 's/compression = ""/compression = "lz4"/' ${ITS}
else
sed -i -e 's/arch = ""/arch = "arm"/g' -e 's/compression = ""/compression = "none"/' ${ITS}
fi
FIT_DESC=$(${MKIMAGE} ${MKIMAGE_ARG} -f ${ITS} boot.img | grep "FIT description" | sed 's/FIT description: //')
echo " Image: boot.img (${FIT_DESC}) is ready";
}
if [ -x ${srctree}/scripts/bmpconvert ]; then
if [ -f ${LOGO_PATH} ]; then
${srctree}/scripts/bmpconvert ${LOGO_PATH};
fi
if [ -f ${LOGO_KERNEL_PATH} ]; then
${srctree}/scripts/bmpconvert ${LOGO_KERNEL_PATH};
fi
fi
if [ "${srctree}" != "${objtree}" ]; then
if [ -f ${LOGO_PATH} ]; then
cp -a ${LOGO_PATH} ${objtree}/;
fi
if [ -f ${LOGO_KERNEL_PATH} ]; then
cp -a ${LOGO_KERNEL_PATH} ${objtree}/;
fi
fi
scripts/resource_tool ${DTB_PATH} ${LOGO} ${LOGO_KERNEL} >/dev/null
echo " Image: resource.img (with ${DTB} ${LOGO} ${LOGO_KERNEL}) is ready"
if [ -f "${BOOT_IMG}" ]; then
if file -L -p -b ${BOOT_IMG} | grep -q 'Device Tree Blob' ; then
repack_itb;
elif [ -x ${srctree}/scripts/repack-bootimg ]; then
if [[ $MULTI_DTB = "true" ]] ; then
echo " ready to build multi dtb boot.img";
repack_multi_dtb_boot_img;
else
repack_boot_img;
fi
fi
elif [ -f "${BOOT_ITS}" ]; then
make_fit_boot_img;
elif [ -x ${srctree}/scripts/mkbootimg ]; then
if [[ $MULTI_DTB = "true" ]] ; then
echo " ready to build multi dtb boot.img";
make_boot_multi_dtb_img;
else
make_boot_img;
fi
fi
解决:
1. 从原sdk中拷贝c文件(当然可以直接拷贝二进程执行文件,拷贝二进制就不用修改makefile了)
cp ../kernel/scripts/resource_tool.c scripts/
resource_tool.c原文如下:
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2008-2015 Fuzhou Rockchip Electronics Co., Ltd
*/
#include
#include
#include
#include
#include
#include
#include
#include
/**
* \brief SHA-1 context structure
*/
typedef struct
{
unsigned long total[2]; /*!< number of bytes processed */
unsigned long state[5]; /*!< intermediate digest state */
unsigned char buffer[64]; /*!< data block being processed */
}
sha1_context;
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) { \
(n) = ( (unsigned long) (b)[(i) ] << 24 ) \
| ( (unsigned long) (b)[(i) + 1] << 16 ) \
| ( (unsigned long) (b)[(i) + 2] << 8 ) \
| ( (unsigned long) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) { \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
/*
* SHA-1 context setup
*/
static
void sha1_starts (sha1_context * ctx)
{
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
}
static void sha1_process(sha1_context *ctx, const unsigned char data[64])
{
unsigned long temp, W[16], A, B, C, D, E;
GET_UINT32_BE (W[0], data, 0);
GET_UINT32_BE (W[1], data, 4);
GET_UINT32_BE (W[2], data, 8);
GET_UINT32_BE (W[3], data, 12);
GET_UINT32_BE (W[4], data, 16);
GET_UINT32_BE (W[5], data, 20);
GET_UINT32_BE (W[6], data, 24);
GET_UINT32_BE (W[7], data, 28);
GET_UINT32_BE (W[8], data, 32);
GET_UINT32_BE (W[9], data, 36);
GET_UINT32_BE (W[10], data, 40);
GET_UINT32_BE (W[11], data, 44);
GET_UINT32_BE (W[12], data, 48);
GET_UINT32_BE (W[13], data, 52);
GET_UINT32_BE (W[14], data, 56);
GET_UINT32_BE (W[15], data, 60);
#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
#define R(t) ( \
temp = W[(t - 3) & 0x0F] ^ W[(t - 8) & 0x0F] ^ \
W[(t - 14) & 0x0F] ^ W[ t & 0x0F], \
( W[t & 0x0F] = S(temp,1) ) \
)
#define P(a,b,c,d,e,x) { \
e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
#define F(x,y,z) (z ^ (x & (y ^ z)))
#define K 0x5A827999
P (A, B, C, D, E, W[0]);
P (E, A, B, C, D, W[1]);
P (D, E, A, B, C, W[2]);
P (C, D, E, A, B, W[3]);
P (B, C, D, E, A, W[4]);
P (A, B, C, D, E, W[5]);
P (E, A, B, C, D, W[6]);
P (D, E, A, B, C, W[7]);
P (C, D, E, A, B, W[8]);
P (B, C, D, E, A, W[9]);
P (A, B, C, D, E, W[10]);
P (E, A, B, C, D, W[11]);
P (D, E, A, B, C, W[12]);
P (C, D, E, A, B, W[13]);
P (B, C, D, E, A, W[14]);
P (A, B, C, D, E, W[15]);
P (E, A, B, C, D, R (16));
P (D, E, A, B, C, R (17));
P (C, D, E, A, B, R (18));
P (B, C, D, E, A, R (19));
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0x6ED9EBA1
P (A, B, C, D, E, R (20));
P (E, A, B, C, D, R (21));
P (D, E, A, B, C, R (22));
P (C, D, E, A, B, R (23));
P (B, C, D, E, A, R (24));
P (A, B, C, D, E, R (25));
P (E, A, B, C, D, R (26));
P (D, E, A, B, C, R (27));
P (C, D, E, A, B, R (28));
P (B, C, D, E, A, R (29));
P (A, B, C, D, E, R (30));
P (E, A, B, C, D, R (31));
P (D, E, A, B, C, R (32));
P (C, D, E, A, B, R (33));
P (B, C, D, E, A, R (34));
P (A, B, C, D, E, R (35));
P (E, A, B, C, D, R (36));
P (D, E, A, B, C, R (37));
P (C, D, E, A, B, R (38));
P (B, C, D, E, A, R (39));
#undef K
#undef F
#define F(x,y,z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDC
P (A, B, C, D, E, R (40));
P (E, A, B, C, D, R (41));
P (D, E, A, B, C, R (42));
P (C, D, E, A, B, R (43));
P (B, C, D, E, A, R (44));
P (A, B, C, D, E, R (45));
P (E, A, B, C, D, R (46));
P (D, E, A, B, C, R (47));
P (C, D, E, A, B, R (48));
P (B, C, D, E, A, R (49));
P (A, B, C, D, E, R (50));
P (E, A, B, C, D, R (51));
P (D, E, A, B, C, R (52));
P (C, D, E, A, B, R (53));
P (B, C, D, E, A, R (54));
P (A, B, C, D, E, R (55));
P (E, A, B, C, D, R (56));
P (D, E, A, B, C, R (57));
P (C, D, E, A, B, R (58));
P (B, C, D, E, A, R (59));
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0xCA62C1D6
P (A, B, C, D, E, R (60));
P (E, A, B, C, D, R (61));
P (D, E, A, B, C, R (62));
P (C, D, E, A, B, R (63));
P (B, C, D, E, A, R (64));
P (A, B, C, D, E, R (65));
P (E, A, B, C, D, R (66));
P (D, E, A, B, C, R (67));
P (C, D, E, A, B, R (68));
P (B, C, D, E, A, R (69));
P (A, B, C, D, E, R (70));
P (E, A, B, C, D, R (71));
P (D, E, A, B, C, R (72));
P (C, D, E, A, B, R (73));
P (B, C, D, E, A, R (74));
P (A, B, C, D, E, R (75));
P (E, A, B, C, D, R (76));
P (D, E, A, B, C, R (77));
P (C, D, E, A, B, R (78));
P (B, C, D, E, A, R (79));
#undef K
#undef F
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}
#undef P
#undef R
#undef S
/*
* SHA-1 process buffer
*/
static
void sha1_update(sha1_context *ctx, const unsigned char *input,
unsigned int ilen)
{
int fill;
unsigned long left;
if (ilen <= 0)
return;
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += ilen;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < (unsigned long) ilen)
ctx->total[1]++;
if (left && ilen >= fill) {
memcpy ((void *) (ctx->buffer + left), (void *) input, fill);
sha1_process (ctx, ctx->buffer);
input += fill;
ilen -= fill;
left = 0;
}
while (ilen >= 64) {
sha1_process (ctx, input);
input += 64;
ilen -= 64;
}
if (ilen > 0) {
memcpy ((void *) (ctx->buffer + left), (void *) input, ilen);
}
}
static const unsigned char sha1_padding[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* SHA-1 final digest
*/
static
void sha1_finish (sha1_context * ctx, unsigned char output[20])
{
unsigned long last, padn;
unsigned long high, low;
unsigned char msglen[8];
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
PUT_UINT32_BE (high, msglen, 0);
PUT_UINT32_BE (low, msglen, 4);
last = ctx->total[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
sha1_update (ctx, (unsigned char *) sha1_padding, padn);
sha1_update (ctx, msglen, 8);
PUT_UINT32_BE (ctx->state[0], output, 0);
PUT_UINT32_BE (ctx->state[1], output, 4);
PUT_UINT32_BE (ctx->state[2], output, 8);
PUT_UINT32_BE (ctx->state[3], output, 12);
PUT_UINT32_BE (ctx->state[4], output, 16);
}
/*
* Output = SHA-1( input buffer )
*/
static
void sha1_csum(const unsigned char *input, unsigned int ilen,
unsigned char *output)
{
sha1_context ctx;
sha1_starts (&ctx);
sha1_update (&ctx, input, ilen);
sha1_finish (&ctx, output);
}
typedef struct {
uint32_t total[2];
uint32_t state[8];
uint8_t buffer[64];
} sha256_context;
static
void sha256_starts(sha256_context * ctx)
{
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
static void sha256_process(sha256_context *ctx, const uint8_t data[64])
{
uint32_t temp1, temp2;
uint32_t W[64];
uint32_t A, B, C, D, E, F, G, H;
GET_UINT32_BE(W[0], data, 0);
GET_UINT32_BE(W[1], data, 4);
GET_UINT32_BE(W[2], data, 8);
GET_UINT32_BE(W[3], data, 12);
GET_UINT32_BE(W[4], data, 16);
GET_UINT32_BE(W[5], data, 20);
GET_UINT32_BE(W[6], data, 24);
GET_UINT32_BE(W[7], data, 28);
GET_UINT32_BE(W[8], data, 32);
GET_UINT32_BE(W[9], data, 36);
GET_UINT32_BE(W[10], data, 40);
GET_UINT32_BE(W[11], data, 44);
GET_UINT32_BE(W[12], data, 48);
GET_UINT32_BE(W[13], data, 52);
GET_UINT32_BE(W[14], data, 56);
GET_UINT32_BE(W[15], data, 60);
#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
#define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define F0(x,y,z) ((x & y) | (z & (x | y)))
#define F1(x,y,z) (z ^ (x & (y ^ z)))
#define R(t) \
( \
W[t] = S1(W[t - 2]) + W[t - 7] + \
S0(W[t - 15]) + W[t - 16] \
)
#define P(a,b,c,d,e,f,g,h,x,K) { \
temp1 = h + S3(e) + F1(e,f,g) + K + x; \
temp2 = S2(a) + F0(a,b,c); \
d += temp1; h = temp1 + temp2; \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
F = ctx->state[5];
G = ctx->state[6];
H = ctx->state[7];
P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98);
P(H, A, B, C, D, E, F, G, W[1], 0x71374491);
P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF);
P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5);
P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B);
P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1);
P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4);
P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5);
P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98);
P(H, A, B, C, D, E, F, G, W[9], 0x12835B01);
P(G, H, A, B, C, D, E, F, W[10], 0x243185BE);
P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
P(A, B, C, D, E, F, G, H, R(24), 0x983E5152);
P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
P(B, C, D, E, F, G, H, A, R(31), 0x14292967);
P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
P(F, G, H, A, B, C, D, E, R(35), 0x53380D13);
P(E, F, G, H, A, B, C, D, R(36), 0x650A7354);
P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
P(B, C, D, E, F, G, H, A, R(39), 0x92722C85);
P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
P(E, F, G, H, A, B, C, D, R(44), 0xD192E819);
P(D, E, F, G, H, A, B, C, R(45), 0xD6990624);
P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
P(B, C, D, E, F, G, H, A, R(47), 0x106AA070);
P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
P(G, H, A, B, C, D, E, F, R(50), 0x2748774C);
P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
P(G, H, A, B, C, D, E, F, R(58), 0x84C87814);
P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
ctx->state[5] += F;
ctx->state[6] += G;
ctx->state[7] += H;
}
#undef P
#undef R
#undef F1
#undef F0
#undef S3
#undef S2
#undef S1
#undef S0
#undef ROTR
#undef SHR
static
void sha256_update(sha256_context *ctx, const uint8_t *input, uint32_t length)
{
uint32_t left, fill;
if (!length)
return;
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += length;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < length)
ctx->total[1]++;
if (left && length >= fill) {
memcpy((void *) (ctx->buffer + left), (void *) input, fill);
sha256_process(ctx, ctx->buffer);
length -= fill;
input += fill;
left = 0;
}
while (length >= 64) {
sha256_process(ctx, input);
length -= 64;
input += 64;
}
if (length)
memcpy((void *) (ctx->buffer + left), (void *) input, length);
}
static uint8_t sha256_padding[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static
void sha256_finish(sha256_context * ctx, uint8_t digest[32])
{
uint32_t last, padn;
uint32_t high, low;
uint8_t msglen[8];
high = ((ctx->total[0] >> 29)
| (ctx->total[1] << 3));
low = (ctx->total[0] << 3);
PUT_UINT32_BE(high, msglen, 0);
PUT_UINT32_BE(low, msglen, 4);
last = ctx->total[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
sha256_update(ctx, sha256_padding, padn);
sha256_update(ctx, msglen, 8);
PUT_UINT32_BE(ctx->state[0], digest, 0);
PUT_UINT32_BE(ctx->state[1], digest, 4);
PUT_UINT32_BE(ctx->state[2], digest, 8);
PUT_UINT32_BE(ctx->state[3], digest, 12);
PUT_UINT32_BE(ctx->state[4], digest, 16);
PUT_UINT32_BE(ctx->state[5], digest, 20);
PUT_UINT32_BE(ctx->state[6], digest, 24);
PUT_UINT32_BE(ctx->state[7], digest, 28);
}
/*
* Output = SHA-256( input buffer ).
*/
static
void sha256_csum(const unsigned char *input, unsigned int ilen,
unsigned char *output)
{
sha256_context ctx;
sha256_starts(&ctx);
sha256_update(&ctx, input, ilen);
sha256_finish(&ctx, output);
}
/* #define DEBUG */
static bool g_debug =
#ifdef DEBUG
true;
#else
false;
#endif /* DEBUG */
#define LOGE(fmt, args...) \
fprintf(stderr, "E/%s(%d): " fmt "\n", __func__, __LINE__, ##args)
#define LOGD(fmt, args...) \
do { \
if (g_debug) \
fprintf(stderr, "D/%s(%d): " fmt "\n", __func__, __LINE__, ##args); \
} while (0)
/* sync with ./board/rockchip/rk30xx/rkloader.c #define FDT_PATH */
#define FDT_PATH "rk-kernel.dtb"
#define DTD_SUBFIX ".dtb"
#define DEFAULT_IMAGE_PATH "resource.img"
#define DEFAULT_UNPACK_DIR "out"
#define BLOCK_SIZE 512
#define RESOURCE_PTN_HDR_SIZE 1
#define INDEX_TBL_ENTR_SIZE 1
#define RESOURCE_PTN_VERSION 0
#define INDEX_TBL_VERSION 0
#define RESOURCE_PTN_HDR_MAGIC "RSCE"
typedef struct {
char magic[4]; /* tag, "RSCE" */
uint16_t resource_ptn_version;
uint16_t index_tbl_version;
uint8_t header_size; /* blocks, size of ptn header. */
uint8_t tbl_offset; /* blocks, offset of index table. */
uint8_t tbl_entry_size; /* blocks, size of index table's entry. */
uint32_t tbl_entry_num; /* numbers of index table's entry. */
} resource_ptn_header;
#define INDEX_TBL_ENTR_TAG "ENTR"
#define MAX_INDEX_ENTRY_PATH_LEN 220
#define MAX_HASH_LEN 32
typedef struct {
char tag[4]; /* tag, "ENTR" */
char path[MAX_INDEX_ENTRY_PATH_LEN];
char hash[MAX_HASH_LEN]; /* hash data */
uint32_t hash_size; /* 20 or 32 */
uint32_t content_offset; /* blocks, offset of resource content. */
uint32_t content_size; /* bytes, size of resource content. */
} index_tbl_entry;
#define OPT_VERBOSE "--verbose"
#define OPT_HELP "--help"
#define OPT_VERSION "--version"
#define OPT_PRINT "--print"
#define OPT_PACK "--pack"
#define OPT_UNPACK "--unpack"
#define OPT_TEST_LOAD "--test_load"
#define OPT_TEST_CHARGE "--test_charge"
#define OPT_IMAGE "--image="
#define OPT_ROOT "--root="
#define VERSION "2014-5-31 14:43:42"
typedef struct {
char path[MAX_INDEX_ENTRY_PATH_LEN];
uint32_t content_offset; /* blocks, offset of resource content. */
uint32_t content_size; /* bytes, size of resource content. */
void *load_addr;
} resource_content;
typedef struct {
int max_level;
int num;
int delay;
char prefix[MAX_INDEX_ENTRY_PATH_LEN];
} anim_level_conf;
#define DEF_CHARGE_DESC_PATH "charge_anim_desc.txt"
#define OPT_CHARGE_ANIM_DELAY "delay="
#define OPT_CHARGE_ANIM_LOOP_CUR "only_current_level="
#define OPT_CHARGE_ANIM_LEVELS "levels="
#define OPT_CHARGE_ANIM_LEVEL_CONF "max_level="
#define OPT_CHARGE_ANIM_LEVEL_NUM "num="
#define OPT_CHARGE_ANIM_LEVEL_PFX "prefix="
static char image_path[MAX_INDEX_ENTRY_PATH_LEN] = "\0";
static int fix_blocks(size_t size)
{
return (size + BLOCK_SIZE - 1) / BLOCK_SIZE;
}
static const char *fix_path(const char *path)
{
if (!memcmp(path, "./", 2)) {
return path + 2;
}
return path;
}
static uint16_t switch_short(uint16_t x)
{
uint16_t val;
uint8_t *p = (uint8_t *)(&x);
val = (*p++ & 0xff) << 0;
val |= (*p & 0xff) << 8;
return val;
}
static uint32_t switch_int(uint32_t x)
{
uint32_t val;
uint8_t *p = (uint8_t *)(&x);
val = (*p++ & 0xff) << 0;
val |= (*p++ & 0xff) << 8;
val |= (*p++ & 0xff) << 16;
val |= (*p & 0xff) << 24;
return val;
}
static void fix_header(resource_ptn_header *header)
{
/* switch for be. */
header->resource_ptn_version = switch_short(header->resource_ptn_version);
header->index_tbl_version = switch_short(header->index_tbl_version);
header->tbl_entry_num = switch_int(header->tbl_entry_num);
}
static void fix_entry(index_tbl_entry *entry)
{
/* switch for be. */
entry->content_offset = switch_int(entry->content_offset);
entry->content_size = switch_int(entry->content_size);
}
static int inline get_ptn_offset(void)
{
return 0;
}
static bool StorageWriteLba(int offset_block, void *data, int blocks)
{
bool ret = false;
FILE *file = fopen(image_path, "rb+");
if (!file)
goto end;
int offset = offset_block * BLOCK_SIZE;
fseek(file, offset, SEEK_SET);
if (offset != ftell(file)) {
LOGE("Failed to seek %s to %d!", image_path, offset);
goto end;
}
if (!fwrite(data, blocks * BLOCK_SIZE, 1, file)) {
LOGE("Failed to write %s!", image_path);
goto end;
}
ret = true;
end:
if (file)
fclose(file);
return ret;
}
static bool StorageReadLba(int offset_block, void *data, int blocks)
{
bool ret = false;
FILE *file = fopen(image_path, "rb");
if (!file)
goto end;
int offset = offset_block * BLOCK_SIZE;
fseek(file, offset, SEEK_SET);
if (offset != ftell(file)) {
goto end;
}
if (!fread(data, blocks * BLOCK_SIZE, 1, file)) {
goto end;
}
ret = true;
end:
if (file)
fclose(file);
return ret;
}
static bool write_data(int offset_block, void *data, size_t len)
{
bool ret = false;
if (!data)
goto end;
int blocks = len / BLOCK_SIZE;
if (blocks && !StorageWriteLba(offset_block, data, blocks)) {
goto end;
}
int left = len % BLOCK_SIZE;
if (left) {
char buf[BLOCK_SIZE] = "\0";
memcpy(buf, data + blocks * BLOCK_SIZE, left);
if (!StorageWriteLba(offset_block + blocks, buf, 1))
goto end;
}
ret = true;
end:
return ret;
}
/**********************load test************************/
static int load_file(const char *file_path, int offset_block, int blocks);
static int test_load(int argc, char **argv)
{
if (argc < 1) {
LOGE("Nothing to load!");
return -1;
}
const char *file_path;
int offset_block = 0;
int blocks = 0;
if (argc > 0) {
file_path = (const char *)fix_path(argv[0]);
argc--, argv++;
}
if (argc > 0) {
offset_block = atoi(argv[0]);
argc--, argv++;
}
if (argc > 0) {
blocks = atoi(argv[0]);
}
return load_file(file_path, offset_block, blocks);
}
static void free_content(resource_content *content)
{
if (content->load_addr) {
free(content->load_addr);
content->load_addr = 0;
}
}
static void tests_dump_file(const char *path, void *data, int len)
{
FILE *file = fopen(path, "wb");
if (!file)
return;
fwrite(data, len, 1, file);
fclose(file);
}
static bool load_content(resource_content *content)
{
if (content->load_addr)
return true;
int blocks = fix_blocks(content->content_size);
content->load_addr = malloc(blocks * BLOCK_SIZE);
if (!content->load_addr)
return false;
if (!StorageReadLba(get_ptn_offset() + content->content_offset,
content->load_addr, blocks)) {
free_content(content);
return false;
}
tests_dump_file(content->path, content->load_addr, content->content_size);
return true;
}
static bool load_content_data(resource_content *content, int offset_block,
void *data, int blocks)
{
if (!StorageReadLba(get_ptn_offset() + content->content_offset + offset_block,
data, blocks)) {
return false;
}
tests_dump_file(content->path, data, blocks * BLOCK_SIZE);
return true;
}
static bool get_entry(const char *file_path, index_tbl_entry *entry)
{
bool ret = false;
char buf[BLOCK_SIZE];
resource_ptn_header header;
if (!StorageReadLba(get_ptn_offset(), buf, 1)) {
LOGE("Failed to read header!");
goto end;
}
memcpy(&header, buf, sizeof(header));
if (memcmp(header.magic, RESOURCE_PTN_HDR_MAGIC, sizeof(header.magic))) {
LOGE("Not a resource image(%s)!", image_path);
goto end;
}
/* test on pc, switch for be. */
fix_header(&header);
/* TODO: support header_size & tbl_entry_size */
if (header.resource_ptn_version != RESOURCE_PTN_VERSION ||
header.header_size != RESOURCE_PTN_HDR_SIZE ||
header.index_tbl_version != INDEX_TBL_VERSION ||
header.tbl_entry_size != INDEX_TBL_ENTR_SIZE) {
LOGE("Not supported in this version!");
goto end;
}
int i;
for (i = 0; i < header.tbl_entry_num; i++) {
/* TODO: support tbl_entry_size */
if (!StorageReadLba(
get_ptn_offset() + header.header_size + i * header.tbl_entry_size,
buf, 1)) {
LOGE("Failed to read index entry:%d!", i);
goto end;
}
memcpy(entry, buf, sizeof(*entry));
if (memcmp(entry->tag, INDEX_TBL_ENTR_TAG, sizeof(entry->tag))) {
LOGE("Something wrong with index entry:%d!", i);
goto end;
}
if (!strncmp(entry->path, file_path, sizeof(entry->path)))
break;
}
if (i == header.tbl_entry_num) {
LOGE("Cannot find %s!", file_path);
goto end;
}
/* test on pc, switch for be. */
fix_entry(entry);
printf("Found entry:\n\tpath:%s\n\toffset:%d\tsize:%d\n", entry->path,
entry->content_offset, entry->content_size);
ret = true;
end:
return ret;
}
static bool get_content(resource_content *content)
{
bool ret = false;
index_tbl_entry entry;
if (!get_entry(content->path, &entry))
goto end;
content->content_offset = entry.content_offset;
content->content_size = entry.content_size;
ret = true;
end:
return ret;
}
static int load_file(const char *file_path, int offset_block, int blocks)
{
printf("Try to load:%s", file_path);
if (blocks) {
printf(", offset block:%d, blocks:%d\n", offset_block, blocks);
} else {
printf("\n");
}
bool ret = false;
resource_content content;
snprintf(content.path, sizeof(content.path), "%s", file_path);
content.load_addr = 0;
if (!get_content(&content)) {
goto end;
}
if (!blocks) {
if (!load_content(&content)) {
goto end;
}
} else {
void *data = malloc(blocks * BLOCK_SIZE);
if (!data)
goto end;
if (!load_content_data(&content, offset_block, data, blocks)) {
goto end;
}
}
ret = true;
end:
free_content(&content);
return ret;
}
/**********************load test end************************/
/**********************anim test************************/
static bool parse_level_conf(const char *arg, anim_level_conf *level_conf)
{
memset(level_conf, 0, sizeof(anim_level_conf));
char *buf = NULL;
buf = strstr(arg, OPT_CHARGE_ANIM_LEVEL_CONF);
if (buf) {
level_conf->max_level = atoi(buf + strlen(OPT_CHARGE_ANIM_LEVEL_CONF));
} else {
LOGE("Not found:%s", OPT_CHARGE_ANIM_LEVEL_CONF);
return false;
}
buf = strstr(arg, OPT_CHARGE_ANIM_LEVEL_NUM);
if (buf) {
level_conf->num = atoi(buf + strlen(OPT_CHARGE_ANIM_LEVEL_NUM));
if (level_conf->num <= 0) {
return false;
}
} else {
LOGE("Not found:%s", OPT_CHARGE_ANIM_LEVEL_NUM);
return false;
}
buf = strstr(arg, OPT_CHARGE_ANIM_DELAY);
if (buf) {
level_conf->delay = atoi(buf + strlen(OPT_CHARGE_ANIM_DELAY));
}
buf = strstr(arg, OPT_CHARGE_ANIM_LEVEL_PFX);
if (buf) {
snprintf(level_conf->prefix, sizeof(level_conf->prefix), "%s",
buf + strlen(OPT_CHARGE_ANIM_LEVEL_PFX));
} else {
LOGE("Not found:%s", OPT_CHARGE_ANIM_LEVEL_PFX);
return false;
}
LOGD("Found conf:\nmax_level:%d, num:%d, delay:%d, prefix:%s",
level_conf->max_level, level_conf->num, level_conf->delay,
level_conf->prefix);
return true;
}
static int test_charge(int argc, char **argv)
{
const char *desc;
if (argc > 0) {
desc = argv[0];
} else {
desc = DEF_CHARGE_DESC_PATH;
}
resource_content content;
snprintf(content.path, sizeof(content.path), "%s", desc);
content.load_addr = 0;
if (!get_content(&content)) {
goto end;
}
if (!load_content(&content)) {
goto end;
}
char *buf = (char *)content.load_addr;
char *end = buf + content.content_size - 1;
*end = '\0';
LOGD("desc:\n%s", buf);
int pos = 0;
while (1) {
char *line = (char *)memchr(buf + pos, '\n', strlen(buf + pos));
if (!line)
break;
*line = '\0';
LOGD("splite:%s", buf + pos);
pos += (strlen(buf + pos) + 1);
}
int delay = 900;
int only_current_level = false;
anim_level_conf *level_confs = NULL;
int level_conf_pos = 0;
int level_conf_num = 0;
while (true) {
if (buf >= end)
break;
const char *arg = buf;
buf += (strlen(buf) + 1);
LOGD("parse arg:%s", arg);
if (!memcmp(arg, OPT_CHARGE_ANIM_LEVEL_CONF,
strlen(OPT_CHARGE_ANIM_LEVEL_CONF))) {
if (!level_confs) {
LOGE("Found level conf before levels!");
goto end;
}
if (level_conf_pos >= level_conf_num) {
LOGE("Too many level confs!(%d >= %d)", level_conf_pos, level_conf_num);
goto end;
}
if (!parse_level_conf(arg, level_confs + level_conf_pos)) {
LOGE("Failed to parse level conf:%s", arg);
goto end;
}
level_conf_pos++;
} else if (!memcmp(arg, OPT_CHARGE_ANIM_DELAY,
strlen(OPT_CHARGE_ANIM_DELAY))) {
delay = atoi(arg + strlen(OPT_CHARGE_ANIM_DELAY));
LOGD("Found delay:%d", delay);
} else if (!memcmp(arg, OPT_CHARGE_ANIM_LOOP_CUR,
strlen(OPT_CHARGE_ANIM_LOOP_CUR))) {
only_current_level =
!memcmp(arg + strlen(OPT_CHARGE_ANIM_LOOP_CUR), "true", 4);
LOGD("Found only_current_level:%d", only_current_level);
} else if (!memcmp(arg, OPT_CHARGE_ANIM_LEVELS,
strlen(OPT_CHARGE_ANIM_LEVELS))) {
if (level_conf_num) {
goto end;
}
level_conf_num = atoi(arg + strlen(OPT_CHARGE_ANIM_LEVELS));
if (!level_conf_num) {
goto end;
}
level_confs =
(anim_level_conf *)malloc(level_conf_num * sizeof(anim_level_conf));
LOGD("Found levels:%d", level_conf_num);
} else {
LOGE("Unknown arg:%s", arg);
goto end;
}
}
if (level_conf_pos != level_conf_num || !level_conf_num) {
LOGE("Something wrong with level confs!");
goto end;
}
int i = 0, j = 0;
for (i = 0; i < level_conf_num; i++) {
if (!level_confs[i].delay) {
level_confs[i].delay = delay;
}
if (!level_confs[i].delay) {
LOGE("Missing delay in level conf:%d", i);
goto end;
}
for (j = 0; j < i; j++) {
if (level_confs[j].max_level == level_confs[i].max_level) {
LOGE("Dup level conf:%d", i);
goto end;
}
if (level_confs[j].max_level > level_confs[i].max_level) {
anim_level_conf conf = level_confs[i];
memmove(level_confs + j + 1, level_confs + j,
(i - j) * sizeof(anim_level_conf));
level_confs[j] = conf;
}
}
}
printf("Parse anim desc(%s):\n", desc);
printf("only_current_level=%d\n", only_current_level);
printf("level conf:\n");
for (i = 0; i < level_conf_num; i++) {
printf("\tmax=%d, delay=%d, num=%d, prefix=%s\n", level_confs[i].max_level,
level_confs[i].delay, level_confs[i].num, level_confs[i].prefix);
}
end:
free_content(&content);
return 0;
}
/**********************anim test end************************/
/**********************append file************************/
static const char *PROG = NULL;
static resource_ptn_header header;
static bool just_print = false;
static char root_path[MAX_INDEX_ENTRY_PATH_LEN] = "\0";
static void version(void)
{
printf("%s ([email protected])\t" VERSION "\n", PROG);
}
static void usage(void)
{
printf("Usage: %s [options] [FILES]\n", PROG);
printf("Tools for Rockchip's resource image.\n");
version();
printf("Options:\n");
printf("\t" OPT_PACK "\t\t\tPack image from given files.\n");
printf("\t" OPT_UNPACK "\t\tUnpack given image to current dir.\n");
printf("\t" OPT_IMAGE "path"
"\t\tSpecify input/output image path.\n");
printf("\t" OPT_PRINT "\t\t\tJust print informations.\n");
printf("\t" OPT_VERBOSE "\t\tDisplay more runtime informations.\n");
printf("\t" OPT_HELP "\t\t\tDisplay this information.\n");
printf("\t" OPT_VERSION "\t\tDisplay version information.\n");
printf("\t" OPT_ROOT "path"
"\t\tSpecify resources' root dir.\n");
}
static int pack_image(int file_num, const char **files);
static int unpack_image(const char *unpack_dir);
enum ACTION {
ACTION_PACK,
ACTION_UNPACK,
ACTION_TEST_LOAD,
ACTION_TEST_CHARGE,
};
int main(int argc, char **argv)
{
PROG = fix_path(argv[0]);
enum ACTION action = ACTION_PACK;
argc--, argv++;
while (argc > 0 && argv[0][0] == '-') {
/* it's a opt arg. */
const char *arg = argv[0];
argc--, argv++;
if (!strcmp(OPT_VERBOSE, arg)) {
g_debug = true;
} else if (!strcmp(OPT_HELP, arg)) {
usage();
return 0;
} else if (!strcmp(OPT_VERSION, arg)) {
version();
return 0;
} else if (!strcmp(OPT_PRINT, arg)) {
just_print = true;
} else if (!strcmp(OPT_PACK, arg)) {
action = ACTION_PACK;
} else if (!strcmp(OPT_UNPACK, arg)) {
action = ACTION_UNPACK;
} else if (!strcmp(OPT_TEST_LOAD, arg)) {
action = ACTION_TEST_LOAD;
} else if (!strcmp(OPT_TEST_CHARGE, arg)) {
action = ACTION_TEST_CHARGE;
} else if (!memcmp(OPT_IMAGE, arg, strlen(OPT_IMAGE))) {
snprintf(image_path, sizeof(image_path), "%s", arg + strlen(OPT_IMAGE));
} else if (!memcmp(OPT_ROOT, arg, strlen(OPT_ROOT))) {
snprintf(root_path, sizeof(root_path), "%s", arg + strlen(OPT_ROOT));
} else {
LOGE("Unknown opt:%s", arg);
usage();
return -1;
}
}
if (!image_path[0]) {
snprintf(image_path, sizeof(image_path), "%s", DEFAULT_IMAGE_PATH);
}
switch (action) {
case ACTION_PACK: {
int file_num = argc;
const char **files = (const char **)argv;
if (!file_num) {
LOGE("No file to pack!");
return 0;
}
LOGD("try to pack %d files.", file_num);
return pack_image(file_num, files);
}
case ACTION_UNPACK: {
return unpack_image(argc > 0 ? argv[0] : DEFAULT_UNPACK_DIR);
}
case ACTION_TEST_LOAD: {
return test_load(argc, argv);
}
case ACTION_TEST_CHARGE: {
return test_charge(argc, argv);
}
}
/* not reach here. */
return -1;
}
/************unpack code****************/
static bool mkdirs(char *path)
{
char *tmp = path;
char *pos = NULL;
char buf[MAX_INDEX_ENTRY_PATH_LEN];
bool ret = true;
while ((pos = memchr(tmp, '/', strlen(tmp)))) {
strcpy(buf, path);
buf[pos - path] = '\0';
tmp = pos + 1;
LOGD("mkdir:%s", buf);
if (!mkdir(buf, 0755)) {
ret = false;
}
}
if (!ret)
LOGD("Failed to mkdir(%s)!", path);
return ret;
}
static bool dump_file(FILE *file, const char *unpack_dir,
index_tbl_entry entry)
{
LOGD("try to dump entry:%s", entry.path);
bool ret = false;
FILE *out_file = NULL;
long int pos = 0;
char path[MAX_INDEX_ENTRY_PATH_LEN * 2 + 1];
if (just_print) {
ret = true;
goto done;
}
pos = ftell(file);
snprintf(path, sizeof(path), "%s/%s", unpack_dir, entry.path);
mkdirs(path);
out_file = fopen(path, "wb");
if (!out_file) {
LOGE("Failed to create:%s", path);
goto end;
}
long int offset = entry.content_offset * BLOCK_SIZE;
fseek(file, offset, SEEK_SET);
if (offset != ftell(file)) {
LOGE("Failed to read content:%s", entry.path);
goto end;
}
char buf[BLOCK_SIZE];
int n;
int len = entry.content_size;
while (len > 0) {
n = len > BLOCK_SIZE ? BLOCK_SIZE : len;
if (!fread(buf, n, 1, file)) {
LOGE("Failed to read content:%s", entry.path);
goto end;
}
if (!fwrite(buf, n, 1, out_file)) {
LOGE("Failed to write:%s", entry.path);
goto end;
}
len -= n;
}
done:
ret = true;
end:
if (out_file)
fclose(out_file);
if (pos)
fseek(file, pos, SEEK_SET);
return ret;
}
static int unpack_image(const char *dir)
{
FILE *image_file = NULL;
bool ret = false;
char unpack_dir[MAX_INDEX_ENTRY_PATH_LEN];
if (just_print)
dir = ".";
snprintf(unpack_dir, sizeof(unpack_dir), "%s", dir);
if (!strlen(unpack_dir)) {
goto end;
} else if (unpack_dir[strlen(unpack_dir) - 1] == '/') {
unpack_dir[strlen(unpack_dir) - 1] = '\0';
}
mkdir(unpack_dir, 0755);
image_file = fopen(image_path, "rb");
char buf[BLOCK_SIZE];
if (!image_file) {
LOGE("Failed to open:%s", image_path);
goto end;
}
if (!fread(buf, BLOCK_SIZE, 1, image_file)) {
LOGE("Failed to read header!");
goto end;
}
memcpy(&header, buf, sizeof(header));
if (memcmp(header.magic, RESOURCE_PTN_HDR_MAGIC, sizeof(header.magic))) {
LOGE("Not a resource image(%s)!", image_path);
goto end;
}
/* switch for be. */
fix_header(&header);
printf("Dump header:\n");
printf("partition version:%d.%d\n", header.resource_ptn_version,
header.index_tbl_version);
printf("header size:%d\n", header.header_size);
printf("index tbl:\n\toffset:%d\tentry size:%d\tentry num:%d\n",
header.tbl_offset, header.tbl_entry_size, header.tbl_entry_num);
/* TODO: support header_size & tbl_entry_size */
if (header.resource_ptn_version != RESOURCE_PTN_VERSION ||
header.header_size != RESOURCE_PTN_HDR_SIZE ||
header.index_tbl_version != INDEX_TBL_VERSION ||
header.tbl_entry_size != INDEX_TBL_ENTR_SIZE) {
LOGE("Not supported in this version!");
goto end;
}
printf("Dump Index table:\n");
index_tbl_entry entry;
int i;
for (i = 0; i < header.tbl_entry_num; i++) {
/* TODO: support tbl_entry_size */
if (!fread(buf, BLOCK_SIZE, 1, image_file)) {
LOGE("Failed to read index entry:%d!", i);
goto end;
}
memcpy(&entry, buf, sizeof(entry));
if (memcmp(entry.tag, INDEX_TBL_ENTR_TAG, sizeof(entry.tag))) {
LOGE("Something wrong with index entry:%d!", i);
goto end;
}
/* switch for be. */
fix_entry(&entry);
printf("entry(%d):\n\tpath:%s\n\toffset:%d\tsize:%d\n", i, entry.path,
entry.content_offset, entry.content_size);
if (!dump_file(image_file, unpack_dir, entry)) {
goto end;
}
}
printf("Unack %s to %s successed!\n", image_path, unpack_dir);
ret = true;
end:
if (image_file)
fclose(image_file);
return ret ? 0 : -1;
}
/************unpack code end****************/
/************pack code****************/
static inline size_t get_file_size(const char *path)
{
LOGD("try to get size(%s)...", path);
struct stat st;
if (stat(path, &st) < 0) {
LOGE("Failed to get size:%s", path);
return -1;
}
LOGD("path:%s, size:%ld", path, st.st_size);
return st.st_size;
}
static int write_file(int offset_block, const char *src_path,
char hash[], int hash_size)
{
LOGD("try to write file(%s) to offset:%d...", src_path, offset_block);
char *buf = NULL;
int ret = -1;
size_t file_size;
FILE *src_file = fopen(src_path, "rb");
if (!src_file) {
LOGE("Failed to open:%s", src_path);
goto end;
}
file_size = get_file_size(src_path);
if (file_size < 0) {
goto end;
}
buf = calloc(file_size, 1);
if (!buf)
goto end;
if (!fread(buf, file_size, 1, src_file))
goto end;
if (!write_data(offset_block, buf, file_size))
goto end;
if (hash_size == 20)
sha1_csum((const unsigned char *)buf, file_size,
(unsigned char *)hash);
else if (hash_size == 32)
sha256_csum((const unsigned char *)buf, file_size,
(unsigned char *)hash);
else
goto end;
ret = file_size;
end:
if (src_file)
fclose(src_file);
if (buf)
free(buf);
return ret;
}
static bool write_header(const int file_num)
{
LOGD("try to write header...");
memcpy(header.magic, RESOURCE_PTN_HDR_MAGIC, sizeof(header.magic));
header.resource_ptn_version = RESOURCE_PTN_VERSION;
header.index_tbl_version = INDEX_TBL_VERSION;
header.header_size = RESOURCE_PTN_HDR_SIZE;
header.tbl_offset = header.header_size;
header.tbl_entry_size = INDEX_TBL_ENTR_SIZE;
header.tbl_entry_num = file_num;
/* switch for le. */
resource_ptn_header hdr = header;
fix_header(&hdr);
return write_data(0, &hdr, sizeof(hdr));
}
static bool write_index_tbl(const int file_num, const char **files)
{
LOGD("try to write index table...");
bool ret = false;
bool foundFdt = false;
int offset =
header.header_size + header.tbl_entry_size * header.tbl_entry_num;
index_tbl_entry entry;
char hash[20]; /* sha1 */
int i;
memcpy(entry.tag, INDEX_TBL_ENTR_TAG, sizeof(entry.tag));
for (i = 0; i < file_num; i++) {
size_t file_size = get_file_size(files[i]);
if (file_size < 0)
goto end;
entry.content_size = file_size;
entry.content_offset = offset;
if (write_file(offset, files[i], hash, sizeof(hash)) < 0)
goto end;
memcpy(entry.hash, hash, sizeof(hash));
entry.hash_size = sizeof(hash);
LOGD("try to write index entry(%s)...", files[i]);
/* switch for le. */
fix_entry(&entry);
memset(entry.path, 0, sizeof(entry.path));
const char *path = files[i];
if (root_path[0]) {
if (!strncmp(path, root_path, strlen(root_path))) {
path += strlen(root_path);
if (path[0] == '/')
path++;
}
}
path = fix_path(path);
if (!strcmp(files[i] + strlen(files[i]) - strlen(DTD_SUBFIX), DTD_SUBFIX)) {
if (!foundFdt) {
/* use default path. */
LOGD("mod fdt path:%s -> %s...", files[i], FDT_PATH);
path = FDT_PATH;
foundFdt = true;
}
}
snprintf(entry.path, sizeof(entry.path), "%s", path);
offset += fix_blocks(file_size);
if (!write_data(header.header_size + i * header.tbl_entry_size, &entry,
sizeof(entry)))
goto end;
}
ret = true;
end:
return ret;
}
static int pack_image(int file_num, const char **files)
{
bool ret = false;
FILE *image_file = fopen(image_path, "wb");
if (!image_file) {
LOGE("Failed to create:%s", image_path);
goto end;
}
fclose(image_file);
/* prepare files */
int i = 0;
int pos = 0;
const char *tmp;
for (i = 0; i < file_num; i++) {
if (!strcmp(files[i] + strlen(files[i]) - strlen(DTD_SUBFIX), DTD_SUBFIX)) {
/* dtb files for kernel. */
tmp = files[pos];
files[pos] = files[i];
files[i] = tmp;
pos++;
} else if (!strcmp(fix_path(image_path), fix_path(files[i]))) {
/* not to pack image itself! */
tmp = files[file_num - 1];
files[file_num - 1] = files[i];
files[i] = tmp;
file_num--;
}
}
if (!write_header(file_num)) {
LOGE("Failed to write header!");
goto end;
}
if (!write_index_tbl(file_num, files)) {
LOGE("Failed to write index table!");
goto end;
}
printf("Pack to %s successed!\n", image_path);
ret = true;
end:
return ret ? 0 : -1;
}
/************pack code end****************/
2.修改 scripts/Makefile ,让他能够编译改c文件
hostprogs-always-$(CONFIG_ARCH_ROCKCHIP) += resource_tool
再次make,就没有错误了。
通过查看mkimg文件的流程,发现还缺少一个命令
从原来的sdk拷贝一个过来,再次make,就成功生成了boot.img。
mkbootimg是一个python脚本,内容如下:
#!/usr/bin/env python
# Copyright 2015, The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from argparse import ArgumentParser, FileType, Action
from hashlib import sha1
from os import fstat
import re
from struct import pack
BOOT_IMAGE_HEADER_V3_PAGESIZE = 4096
def filesize(f):
if f is None:
return 0
try:
return fstat(f.fileno()).st_size
except OSError:
return 0
def update_sha(sha, f):
if f:
sha.update(f.read())
f.seek(0)
sha.update(pack('I', filesize(f)))
else:
sha.update(pack('I', 0))
def pad_file(f, padding):
pad = (padding - (f.tell() & (padding - 1))) & (padding - 1)
f.write(pack(str(pad) + 'x'))
def get_number_of_pages(image_size, page_size):
"""calculates the number of pages required for the image"""
return (image_size + page_size - 1) / page_size
def get_recovery_dtbo_offset(args):
"""calculates the offset of recovery_dtbo image in the boot image"""
num_header_pages = 1 # header occupies a page
num_kernel_pages = get_number_of_pages(filesize(args.kernel), args.pagesize)
num_ramdisk_pages = get_number_of_pages(filesize(args.ramdisk), args.pagesize)
num_second_pages = get_number_of_pages(filesize(args.second), args.pagesize)
dtbo_offset = args.pagesize * (num_header_pages + num_kernel_pages +
num_ramdisk_pages + num_second_pages)
return dtbo_offset
def write_header_v3(args):
BOOT_IMAGE_HEADER_V3_SIZE = 1580
BOOT_MAGIC = 'ANDROID!'.encode()
args.output.write(pack('8s', BOOT_MAGIC))
args.output.write(pack(
'4I',
filesize(args.kernel), # kernel size in bytes
filesize(args.ramdisk), # ramdisk size in bytes
(args.os_version << 11) | args.os_patch_level, # os version and patch level
BOOT_IMAGE_HEADER_V3_SIZE))
args.output.write(pack('4I', 0, 0, 0, 0)) # reserved
args.output.write(pack('I', args.header_version)) # version of bootimage header
args.output.write(pack('1536s', args.cmdline.encode()))
pad_file(args.output, BOOT_IMAGE_HEADER_V3_PAGESIZE)
def write_vendor_boot_header(args):
VENDOR_BOOT_IMAGE_HEADER_V3_SIZE = 2112
BOOT_MAGIC = 'VNDRBOOT'.encode()
args.vendor_boot.write(pack('8s', BOOT_MAGIC))
args.vendor_boot.write(pack(
'5I',
args.header_version, # version of header
args.pagesize, # flash page size we assume
args.base + args.kernel_offset, # kernel physical load addr
args.base + args.ramdisk_offset, # ramdisk physical load addr
filesize(args.vendor_ramdisk))) # vendor ramdisk size in bytes
args.vendor_boot.write(pack('2048s', args.vendor_cmdline.encode()))
args.vendor_boot.write(pack('I', args.base + args.tags_offset)) # physical addr for kernel tags
args.vendor_boot.write(pack('16s', args.board.encode())) # asciiz product name
args.vendor_boot.write(pack('I', VENDOR_BOOT_IMAGE_HEADER_V3_SIZE)) # header size in bytes
if filesize(args.dtb) == 0:
raise ValueError("DTB image must not be empty.")
args.vendor_boot.write(pack('I', filesize(args.dtb))) # size in bytes
args.vendor_boot.write(pack('Q', args.base + args.dtb_offset)) # dtb physical load address
pad_file(args.vendor_boot, args.pagesize)
def write_header(args):
BOOT_IMAGE_HEADER_V1_SIZE = 1648
BOOT_IMAGE_HEADER_V2_SIZE = 1660
BOOT_MAGIC = 'ANDROID!'.encode()
if args.header_version > 3:
raise ValueError('Boot header version %d not supported' % args.header_version)
elif args.header_version == 3:
return write_header_v3(args)
args.output.write(pack('8s', BOOT_MAGIC))
final_ramdisk_offset = (args.base + args.ramdisk_offset) if filesize(args.ramdisk) > 0 else 0
final_second_offset = (args.base + args.second_offset) if filesize(args.second) > 0 else 0
args.output.write(pack(
'10I',
filesize(args.kernel), # size in bytes
args.base + args.kernel_offset, # physical load addr
filesize(args.ramdisk), # size in bytes
final_ramdisk_offset, # physical load addr
filesize(args.second), # size in bytes
final_second_offset, # physical load addr
args.base + args.tags_offset, # physical addr for kernel tags
args.pagesize, # flash page size we assume
args.header_version, # version of bootimage header
(args.os_version << 11) | args.os_patch_level)) # os version and patch level
args.output.write(pack('16s', args.board.encode())) # asciiz product name
args.output.write(pack('512s', args.cmdline[:512].encode()))
sha = sha1()
update_sha(sha, args.kernel)
update_sha(sha, args.ramdisk)
update_sha(sha, args.second)
if args.header_version > 0:
update_sha(sha, args.recovery_dtbo)
if args.header_version > 1:
update_sha(sha, args.dtb)
img_id = pack('32s', sha.digest())
args.output.write(img_id)
args.output.write(pack('1024s', args.cmdline[512:].encode()))
if args.header_version > 0:
args.output.write(pack('I', filesize(args.recovery_dtbo))) # size in bytes
if args.recovery_dtbo:
args.output.write(pack('Q', get_recovery_dtbo_offset(args))) # recovery dtbo offset
else:
args.output.write(pack('Q', 0)) # Will be set to 0 for devices without a recovery dtbo
# Populate boot image header size for header versions 1 and 2.
if args.header_version == 1:
args.output.write(pack('I', BOOT_IMAGE_HEADER_V1_SIZE))
elif args.header_version == 2:
args.output.write(pack('I', BOOT_IMAGE_HEADER_V2_SIZE))
if args.header_version > 1:
# if filesize(args.dtb) == 0:
# raise ValueError("DTB image must not be empty.")
args.output.write(pack('I', filesize(args.dtb))) # size in bytes
args.output.write(pack('Q', args.base + args.dtb_offset)) # dtb physical load address
pad_file(args.output, args.pagesize)
return img_id
class ValidateStrLenAction(Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
if 'maxlen' not in kwargs:
raise ValueError('maxlen must be set')
self.maxlen = int(kwargs['maxlen'])
del kwargs['maxlen']
super(ValidateStrLenAction, self).__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
if len(values) > self.maxlen:
raise ValueError(
'String argument too long: max {0:d}, got {1:d}'.format(self.maxlen, len(values)))
setattr(namespace, self.dest, values)
def write_padded_file(f_out, f_in, padding):
if f_in is None:
return
f_out.write(f_in.read())
pad_file(f_out, padding)
def parse_int(x):
return int(x, 0)
def parse_os_version(x):
match = re.search(r'^(\d{1,3})(?:\.(\d{1,3})(?:\.(\d{1,3}))?)?', x)
if match:
a = int(match.group(1))
b = c = 0
if match.lastindex >= 2:
b = int(match.group(2))
if match.lastindex == 3:
c = int(match.group(3))
# 7 bits allocated for each field
assert a < 128
assert b < 128
assert c < 128
return (a << 14) | (b << 7) | c
return 0
def parse_os_patch_level(x):
match = re.search(r'^(\d{4})-(\d{2})(?:-(\d{2}))?', x)
if match:
y = int(match.group(1)) - 2000
m = int(match.group(2))
# 7 bits allocated for the year, 4 bits for the month
assert 0 <= y < 128
assert 0 < m <= 12
return (y << 4) | m
return 0
def parse_cmdline():
parser = ArgumentParser()
parser.add_argument('--kernel', help='path to the kernel', type=FileType('rb'))
parser.add_argument('--ramdisk', help='path to the ramdisk', type=FileType('rb'))
parser.add_argument('--second', help='path to the 2nd bootloader', type=FileType('rb'))
parser.add_argument('--dtb', help='path to dtb', type=FileType('rb'))
recovery_dtbo_group = parser.add_mutually_exclusive_group()
recovery_dtbo_group.add_argument('--recovery_dtbo', help='path to the recovery DTBO',
type=FileType('rb'))
recovery_dtbo_group.add_argument('--recovery_acpio', help='path to the recovery ACPIO',
type=FileType('rb'), metavar='RECOVERY_ACPIO',
dest='recovery_dtbo')
parser.add_argument('--cmdline', help='extra arguments to be passed on the '
'kernel command line', default='', action=ValidateStrLenAction, maxlen=1536)
parser.add_argument('--vendor_cmdline',
help='kernel command line arguments contained in vendor boot',
default='', action=ValidateStrLenAction, maxlen=2048)
parser.add_argument('--base', help='base address', type=parse_int, default=0x10000000)
parser.add_argument('--kernel_offset', help='kernel offset', type=parse_int, default=0x00008000)
parser.add_argument('--ramdisk_offset', help='ramdisk offset', type=parse_int,
default=0x01000000)
parser.add_argument('--second_offset', help='2nd bootloader offset', type=parse_int,
default=0x00f00000)
parser.add_argument('--dtb_offset', help='dtb offset', type=parse_int, default=0x01f00000)
parser.add_argument('--os_version', help='operating system version', type=parse_os_version,
default=0)
parser.add_argument('--os_patch_level', help='operating system patch level',
type=parse_os_patch_level, default=0)
parser.add_argument('--tags_offset', help='tags offset', type=parse_int, default=0x00000100)
parser.add_argument('--board', help='board name', default='', action=ValidateStrLenAction,
maxlen=16)
parser.add_argument('--pagesize', help='page size', type=parse_int,
choices=[2**i for i in range(11, 15)], default=2048)
parser.add_argument('--id', help='print the image ID on standard output',
action='store_true')
parser.add_argument('--header_version', help='boot image header version', type=parse_int,
default=0)
parser.add_argument('-o', '--output', help='output file name', type=FileType('wb'))
parser.add_argument('--vendor_boot', help='vendor boot output file name', type=FileType('wb'))
parser.add_argument('--vendor_ramdisk', help='path to the vendor ramdisk', type=FileType('rb'))
return parser.parse_args()
def write_data(args, pagesize):
write_padded_file(args.output, args.kernel, pagesize)
write_padded_file(args.output, args.ramdisk, pagesize)
write_padded_file(args.output, args.second, pagesize)
if args.header_version > 0 and args.header_version < 3:
write_padded_file(args.output, args.recovery_dtbo, pagesize)
if args.header_version == 2:
write_padded_file(args.output, args.dtb, pagesize)
def write_vendor_boot_data(args):
write_padded_file(args.vendor_boot, args.vendor_ramdisk, args.pagesize)
write_padded_file(args.vendor_boot, args.dtb, args.pagesize)
def main():
args = parse_cmdline()
if args.vendor_boot is not None:
if args.header_version < 3:
raise ValueError('--vendor_boot not compatible with given header version')
if args.vendor_ramdisk is None:
raise ValueError('--vendor_ramdisk missing or invalid')
write_vendor_boot_header(args)
write_vendor_boot_data(args)
if args.output is not None:
if args.kernel is None:
raise ValueError('kernel must be supplied when creating a boot image')
if args.second is not None and args.header_version > 2:
raise ValueError('--second not compatible with given header version')
img_id = write_header(args)
if args.header_version > 2:
write_data(args, BOOT_IMAGE_HEADER_V3_PAGESIZE)
else:
write_data(args, args.pagesize)
if args.id and img_id is not None:
# Python 2's struct.pack returns a string, but py3 returns bytes.
if isinstance(img_id, str):
img_id = [ord(x) for x in img_id]
print('0x' + ''.join('{:02x}'.format(c) for c in img_id))
if __name__ == '__main__':
main()
最后还有一个说明一下:
logo.bmp和logo_kernel.bmp 我也是拷贝了一份的。