- 深度学习笔记之自然语言处理(NLP)
电棍233
深度学习笔记自然语言处理
深度学习笔记之自然语言处理(NLP)在行将开学之时,我将开始我的深度学习笔记的自然语言处理部分,这部分内容是在前面基础上开展学习的,且目前我的学习更加倾向于通识。自然语言处理部分将包含《动手学深度学习》这本书的第十四章,自然语言处理预训练和第十五章,自然语言处理应用。并且参考原书提供的jupyternotebook资源。自然语言处理,预训练自然语言处理(NaturalLanguageProcess
- react19设计AntVX6 人工智能建模 DAG 图
I like Code?
AntVX6javascript前端开发语言
HomeTop.tsximportReact,{useState,useEffect,useRef}from'react'importuseStorefrom'../../../store/state'import{Graph,Path}from'@antv/x6'import{History}from'@antv/x6-plugin-history'importAlgoNodefrom'../.
- 从零开始玩转TensorFlow:小明的机器学习故事 1
山海青风
#机器学习机器学习tensorflow人工智能
1.引言故事简介小明是一个计算机专业的大三学生,近期在学校里接触到了机器学习。他在某次校园活动中发现,活动主办方总是难以准确预测学生的报名人数,导致准备的物料经常不够或浪费。于是,小明萌生了一个想法:能否通过一些历史数据,用机器学习的方式来预测每场活动的参与率?在老师的建议下,他选择了TensorFlow,一个流行且强大的深度学习框架,希望能将这个想法变成现实。2.开始TensorFlow的旅程场
- 大模型产品架构全景解读:从应用场景到技术支持的完整路径
程序员丸子
架构人工智能AI大模型大模型LLM大语言模型RAG
随着人工智能技术的迅猛发展,大模型逐渐成为推动各行业智能化转型的核心动力之一。大模型不仅可以处理大量数据,进行复杂任务的自动化,还能通过微调、蒸馏等技术在特定场景中表现出色。本文将结合大模型产品架构图,详细解读每一个组成模块,帮助读者理解从应用场景到技术支持的完整路径,洞察大模型如何在实际业务中落地。一、落地场景:赋能业务的智能化解决方案大模型的实际价值首先体现在各个业务场景的落地应用中。在架构图
- 知物由学 | AI网络安全实战:生成对抗网络
Hacker_Fuchen
人工智能web安全生成对抗网络
作者:BradHarris,安全研究员,Brad曾在公共和私营部门的网络和计算机安全领域工作过。他已经完成了从渗透测试到逆向工程到应用研究的所有工作,目前他是IBMX-Force的研究员。GANs是人工智能(AI)的最新思想之一。在我们深入讨论这个话题之前,让我们先来看看“对抗性”这个词的含义。在AI的原始应用中,这个词指的是用来欺骗评估神经网络或另一个机器学习模型的样本类型。随着机器学习在安全应
- 基于深度学习进行呼吸音检测的详细示例
go5463158465
算法深度学习深度学习人工智能
以下是一个基于深度学习进行呼吸音检测的详细示例,我们将使用Python语言以及一些常见的深度学习库(如TensorFlow、Keras)和数据处理库(如numpy、pandas),同时会用到音频处理库librosa。整个流程包括数据加载、预处理、模型构建、训练和评估。步骤1:安装必要的库在开始之前,确保你已经安装了以下库:pipinstalltensorflowlibrosanumpypandas
- 用deepseek学大模型08-用deepseek解读deepseek
wyg_031113
人工智能深度学习
DeepSeekR1是一种先进的深度学习模型架构,结合了Transformer、稀疏注意力机制和动态路由等核心技术。以下是对其核心原理、公式推导及模块分析的详细解析:深入浅析DeepSeek-V3的技术架构1.核心架构概览DeepSeekR1的架构基于改进的Transformer,主要模块包括:稀疏多头自注意力(SparseMulti-HeadSelf-Attention)动态前馈网络(Dynam
- 超越实验室:打造真正在现实世界中奏效的 AI (泛化性与鲁棒性)
海棠AI实验室
人工智能理论与学术机器学习人工智能信息可视化
人工智能正以前所未有的速度从研究实验室走向我们的日常生活。我们看到AI驱动着从语音助手到推荐引擎的各种应用,而自动驾驶汽车、个性化医疗等更具变革性的应用前景也始终令人期待。然而,要真正释放AI的潜力,我们还需要克服一个关键障碍:让AI真正在现实世界中可靠地运行,而不仅仅是在受控的实验室环境中。想象一下,一辆自动驾驶汽车在一个晴朗的下午行驶时表现完美,但当它进入一个大雾天气区域时,它却无法识别前方的
- 告别 AI 幻觉:LangChain + 知识图谱 + 大模型,打造可靠的智能应用
海棠AI实验室
AIAgent学习进阶实战人工智能langchain知识图谱Agent
目录前言:知识图谱在AI中的地位什么是知识图谱?为什么要用知识图谱?LangChain简介:它如何与知识图谱结合?项目准备:环境配置与工具选择手把手实现5.1从文本中提取结构化知识存入图谱6.2基于LangChain知识图谱的查询与推理实践Tips:如何让知识图谱规模化、应用化?总结与展望后记1.前言:知识图谱在AI中的地位在当今的人工智能领域,各类语言模型(如GPT系列、BERT等)已经深刻地影
- 用deepseek学大模型05逻辑回归
wyg_031113
逻辑回归机器学习人工智能
deepseek.com:逻辑回归的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。逻辑回归全面解析一、数学推导模型定义:逻辑回归模型为概率预测模型,输出P(y=1∣x)=σ(w⊤x+b)P(y=1\mid\mathbf{x})=\sigma(\mathbf{w}^\
- 有哪些好用的AI工具?(你想要的AI工具都在这)
c++
1.常见应用场景1.1.国内通用大模型模型名称简介官网地址DeepSeek深度求索公司研发的高性能开源模型,以低成本、高推理能力著称,支持数学、代码等复杂任务。https://chat.deepseek.com/豆包字节跳动开发的智能语言模型,基于深度学习技术,支持多种自然语言处理任务。https://www.doubao.com/Kimi月之暗面科技推出的长文本处理AI助手,擅长中英文对话、文件
- 避坑指南:chatgpt账号购买成品号- chatgpt 4.0 plus成品号购买手册!
chatgpt
购买ChatGPT账号的注意事项及指南✨在当前人工智能技术快速发展的背景下,ChatGPT作为一种强大的语言模型工具️,受到了广泛关注。然而,在获取ChatGPT账号的过程中,用户需审慎考虑多项关键因素,以确保所购账号的安全、可靠及合法性✅,规避潜在风险⚠️。本文将深入探讨购买ChatGPT账号时需重点关注的几个方面,并提供相关建议。1.账号来源审查️♂️账号来源是决定其安全性和可靠性的首要因素
- AI 模型的优化与应用:大模型本体、蒸馏、量化 与 GGUF
CCSBRIDGE
人工智能人工智能
引言近年来,大型语言模型(LLM)在人工智能领域取得了突破性的进展,但其计算需求高昂,训练和推理成本巨大。因此,如何优化大模型,使其在不同设备和应用场景下更高效地运行,成为了AI研究的重要课题。本文将探讨大模型本体(FullModel)、蒸馏(Distillation)、量化(Quantization)和GGUF(GPT-GeneratedUnifiedFormat)等优化技术,并分析它们的区别、
- 上下文感知 AI Agent 将赋予我们的“超能力”
塞大花
AI架构与工具学习之路人工智能aiAgent上下文感知技术发展AI发展行业发展
随着科技的进步,工具正在逐渐演化成真正意义上的“能力”,为我们的生活、工作和思维方式带来前所未有的改变。2025年,我们将从“向人们出售更强大的工具”转向“向人们出售更强大的能力”,这场变革将由上下文感知的AIAgent(人工智能代理)推动。我们即将进入一个新的时代,在这个时代里,AIAgent不仅仅是外部的工具,它们将与我们的日常生活无缝融合,赋予我们“超人”般的能力。工具与能力的区别人类历史上
- 谷歌 AI Agent 白皮书:2025 年,智能体时代已来
人工智能googleagent
谷歌在2024年底发布了AIAgent(AI智能体)白皮书,表明人工智能在商业中将扮演更积极和独立的角色的未来,并详细阐述了智能体的概念、架构、运作方式以及相关技术,为智能体的开发和应用提供了理论框架和实践指导。AI4AI社区为大家对白皮书内容进行了整理,简单概括回顾核心内容,欢迎点击文章底部“阅读原文”获取完整版白皮书。智能体时代已来人类擅长处理复杂的模式识别任务。然而,我们往往需要借助工具——
- 有哪些好用的AI工具?(你想要的AI工具都在这)
c++
1.常见应用场景1.1.国内通用大模型模型名称简介官网地址DeepSeek深度求索公司研发的高性能开源模型,以低成本、高推理能力著称,支持数学、代码等复杂任务。https://chat.deepseek.com/豆包字节跳动开发的智能语言模型,基于深度学习技术,支持多种自然语言处理任务。https://www.doubao.com/Kimi月之暗面科技推出的长文本处理AI助手,擅长中英文对话、文件
- Java中的自然语言处理(NLP)工具:Stanford NLP、Apache OpenNLP、DL4J
花千树-010
RAGjava自然语言处理apachenlpAIGC
随着人工智能技术的快速发展,自然语言处理(NLP)已经成为各行各业中不可或缺的技术。对于Java开发者来说,选择合适的NLP工具可以极大地提升开发效率。今天,我们将探讨几款常用的JavaNLP工具:StanfordNLP、ApacheOpenNLP和DL4J,并通过代码实例展示如何使用它们。1.StanfordNLP:功能全面的NLP工具StanfordNLP是由斯坦福大学开发的自然语言处理工具包
- 【深度学习】预训练和微调概述
CS_木成河
深度学习深度学习人工智能语言模型预训练微调
预训练和微调概述1.预训练和微调的介绍1.1预训练(Pretraining)1.2微调(Fine-Tuning)2.预训练和微调的区别预训练和微调是现代深度学习模型训练中的两个关键步骤,它们通常是一个预训练-微调(Pretrain-Finetune)流程的不同阶段。两者相辅相成,共同帮助模型从通用的知识到特定任务的适应。1.预训练和微调的介绍1.1预训练(Pretraining)定义:预训练是指在
- 【深度学习大模型实例教程:Transformer架构、多模态模型与自监督学习】
生活De°咸鱼
AIGCJava深度学习大数据AIGC
深度学习大模型实例教程:Transformer架构、多模态模型与自监督学习1.深度学习基础概述1.1深度学习的核心概念1.2常见深度学习模型1.3大模型的挑战与解决方案2.数据准备2.1数据处理示例:CIFAR-103.构建深度学习模型4.训练模型5.使用预训练模型(迁移学习)6.Transformer架构6.1Transformer的核心原理6.2Transformer的基本组件6.3Trans
- 深度学习模型的全面解析:技术进展、应用场景与未来趋势
阿尔法星球
深度学习与神经网络实战机器学习
1.深度学习模型概述1.1深度学习模型的定义与分类深度学习模型是基于人工神经网络的算法,它们通过模仿人脑的处理机制来学习数据中的复杂模式和特征。这些模型可以根据其结构和应用场景被分为不同的类别,包括但不限于卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)和Transformer模型等。1.2深度学习模型的关键特点深度学习模型的关键特点在于其深度,即
- 清华独家教程 | 零基础玩转DeepSeek:AI时代的实战赋能手册
阿黎逸阳
学习python人工智能人工智能
在人工智能技术加速渗透各行各业的今天,清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队推出《DeepSeek从入门到精通》,为公众提供了一份权威、实用的AI工具使用指南。这份104页的文档不仅是技术手册,更是人工智能时代的效率革命指南,帮助用户从基础操作到高阶应用全面掌握DeepSeek这一通用人工智能(AGI)工具。当人人都会用AI时,你如何用得更好更出彩?一起来看看吧。
- 深度学习模型:原理、架构与应用
一ge科研小菜菜
工具深度学习
深度学习(DeepLearning)是机器学习中的一个分支,基于人工神经网络的发展,尤其是多层神经网络的研究,使其在语音识别、图像处理、自然语言处理等领域取得了显著进展。深度学习的核心是通过大量数据的训练,学习到数据的内在结构和模式,并且具备自动从复杂的输入中提取特征的能力。本文将从深度学习的基本原理、常见模型、训练技巧、应用领域及其面临的挑战等方面进行详细探讨,帮助理解深度学习模型如何在现代科技
- 基于深度学习的焊缝缺陷检测识别系统:YOLOv10 + UI界面 + 数据集
深度学习&目标检测实战项目
深度学习YOLOui目标跟踪分类人工智能
1.引言1.1背景介绍焊接是现代工业制造中的重要工艺之一,其质量直接影响产品的安全性、耐用性和可靠性。然而,由于焊接工艺的复杂性,在实际应用中不可避免地会出现焊缝缺陷,如气孔、裂纹、未熔合等。这些缺陷不仅降低了焊接质量,还可能导致严重的安全事故。因此,如何高效、准确地检测焊缝缺陷成为工业领域的重要研究课题。传统的焊缝缺陷检测方法主要依赖于人工经验或简单的图像处理技术。这些方法不仅效率低下,而且受主
- 基于深度学习的钢材表面缺陷检测系统:UI界面 + R-CNN + 数据集
深度学习&目标检测实战项目
R-CNN检测系统深度学习uir语言开发语言计算机视觉cnn人工智能
在制造业中,钢材表面缺陷的检测是保证产品质量和生产效率的关键环节。随着工业自动化水平的提高,传统的人工检测已经无法满足快速、精确的检测要求。基于深度学习的钢材表面缺陷检测系统能够通过计算机视觉自动识别钢材表面的缺陷类型和位置,极大地提升了检测的准确性和效率。本文将详细介绍如何基于深度学习、R-CNN算法和自定义数据集构建一个钢材表面缺陷检测系统。内容涵盖从数据准备、R-CNN模型训练到UI界面设计
- .NET架构师:全网最全“权限系统”设计剖析
数字智慧化基地
.NET/C#中大型项目开发.net.netcore微服务架构系统架构
作者:科技、互联网行业优质创作者专注领域:.Net技术、软件架构、人工智能、数字化转型、DeveloperSharp、微服务、工业互联网、智能制造欢迎关注我(Net数字智慧化基地),里面有很多高价值技术文章,是你刻苦努力也积累不到的经验,能助你快速成长。升职+涨薪!!1为什么需要权限管理日常工作中权限的问题时时刻刻伴随着我们,程序员新入职一家公司需要找人开通各种权限,比如网络连接的权限、编码下载提
- PyTorch torch.logsumexp 详解:数学原理、应用场景与性能优化(中英双语)
阿正的梦工坊
PyTorchDeepLearningpytorch人工智能python
PyTorchtorch.logsumexp详解:数学原理、应用场景与性能优化在深度学习和概率模型中,我们经常需要计算数值稳定的对数概率操作,特别是在处理softmax归一化、对数似然计算、损失函数优化等任务时,直接求和再取对数可能会导致数值溢出。torch.logsumexp正是为了解决这一问题而设计的。在本文中,我们将详细介绍:torch.logsumexp的数学原理它的实际用途为什么它比直接
- adeepSeek 使用指南与资源分享
后端
a#deepSeek使用指南与资源分享一、DeepSeek简介deepSeek是一款具有强大推理能力的人工智能模型,其在自然语言处理、逻辑推理和多模态交互等领域表现出色。随着技术的不断发展,DeepSeek已成为Ai领域的热门话题1。二、DeepSeek使用技巧**提示词的使用88提示词是与Deepseek交互的关键。根据卡兹克的分享,DeepSeek的提示词技巧在于简洁明了,避免过度复杂的指令1
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现文章关键词:深度学习,入侵检测,网络安全,神经网络,特征提取,系统设计文章摘要:随着互联网的快速发展和网络攻击技术的不断演进,网络安全形势日益严峻。传统的入侵检测系统(IDS)面临着检测精度低、适应性差等问题,难以有效应对日益复杂的网络攻击。深度学习作为一种强大的机器学习技术,具有强大的特征学习和模式识别能力,为入侵检测技术带来了新的机遇。本文深入探讨了基于深度
- 2024年国内人工智能大模型汇总
kiiy2
人工智能ai学习
文心一言文心一言(ERNIEBot)是百度基于文心大模型技术推出的生成式对话产品,将于2023年3月完成内测并面向公众开放。该产品是百度在人工智能领域深耕十余年后,拥有产业级知识增强文心大模型ERNIE的基础上,利用跨模态、跨语言的深度语义理解与生成能力而开发的一款AI聊天机器人。它被设计用于回答用户的问题和提供信息,以帮助人们解决问题和获取知识。此外,文心一言还可以通过学习和训练,不断提高自己的
- 大一的你如何入门TensorFlow
eso1983
tensorflow人工智能python
刚刚迈入大学的你,对计算机编程还比较陌生。对于现在主流人工智能技术架构TensorFlow的学习,需要循序渐进。入门TensorFlow编程需要结合基础知识学习和实践操作。首先可能需要巩固Python基础,特别是NumPy和数据处理相关的库,因为TensorFlow很多操作和这些库有关联。接下来,可能需要了解机器学习的基本概念。TensorFlow毕竟是一个机器学习框架,如果没有基本的理解,直接上
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb