常见嵌入式面试题之C++基础篇 ——第1期

常见嵌入式面试题之C++基础篇 ——第1期

    • 前言
    • 第1期问题:
      • 1.什么是平衡二叉树
      • 2.什么函数不能声明为虚函数?
      • 3.队列和栈有什么区别,常见用法及其他延伸
      • 4.让类只在堆或栈上创建
      • 5.乐观锁与悲观锁
      • 6.类外部访问权限
      • 7.解决哈希冲突
      • 8.map和unordermap的区别
      • 9. set和unordered_set
      • 10.new和malloc的区别
      • 11.什么是平衡二叉树
      • 12.局部变量能否和全局变量重名?
      • 13.对于一个频繁使用的短小函数,在C语言中应用什么实现,在C++中应用什么实现?
      • 14.什么是多态(延伸)
      • 15.面向接口编程和面向对象编程的区别
      • 16.C++类模板
      • 17.C/C++中auto的理解
      • 18.函数重载
      • 19.什么是静态多态和动态多态
      • 20.进程线程,共享了什么,线程独有什么
    • 总结

前言

本博客旨在分享学习过程中整理过的相关知识,主要涉及C语言、C++及嵌入式相关问题。若涉及引用未注明出处的部分请及时私信或评论。博客内容有误的部分也会及时勘正,最后如有转载请注明出处~谢谢支持!

第1期问题:

1.什么是平衡二叉树

答: 空树或者左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、伸展树。

2.什么函数不能声明为虚函数?

答:
1).只有类的成员函数才能说明为虚函数;
2).静态成员函数不能是虚函数;
3).内联函数不能为虚函数;
4).构造函数不能是虚函数;
(补充:析构函数可以是虚函数,而且通常声明为虚函数。)

3.队列和栈有什么区别,常见用法及其他延伸

答:队列先进先出,栈后进先出

4.让类只在堆或栈上创建

答:在C++中,为了让某个类只能通过new来创建(即如果直接创建对象,编译器将报错),应该(将析构函数设为私有)
编译器在为类对象分配栈空间时,会先检查类的析构函数的访问性,其实不光是析构函数,只要是非静态的函数,编译器都会进行检查。如果类的析构函数是私有的,则编译器不会在栈空间上为类对象分配内存。

让类只在堆上创建
只需要将析构函数私有化就可以组织直接创建对象了。由于栈的创建和释放都需要由系统完成的,所以若是无法调用构造或者析构函数,自然会报错。
当然为了我们能够正确释放动态创建的对象,我们必须提供一个公有函数,该函数的唯一功能就是删除对象本身。

#include
using namespace std;
class test
{
private:
	~test(){ cout << "test destroy" << endl; }
public:
	void destroy()
	{
		delete this;
	}
};
int main()
{
	//test p;//编译器报错test::~test()不可访问
	test *p = new test;
	p->destroy();
}

只能在栈上创建对象
既然可以做到只在堆上创建对象,同样的我们可以只在栈上创建对象。
其实理解了这个理念,不难想到我们只需要让new操作符无法使用即可,要做到这件事,我们可以将new操作符重载并设置为私有访问即可。
重载new的同时最好重载delete

#include
using namespace std;
class test
{
private:
	void* operator new(size_t t){}
	void operator delete(void* ptr){}
public:
	~test()
	{
		cout << "test destroy" << endl;
	}
};
int main()
{
	//test *A = new test;
	//编译器报错函数test::operator new 不可访问
	test A;
}

new和operator new之间的关系
A* a = new A;我们知道这里分为两步:1.分配内存,2.调用A()构造对象。事实上,分配内存这一操作就是由operator new(size_t)来完成的,如果类A重载了operator new,那么将调用A::operator new(size_t ),如果没有重载,就调用::operator new(size_t ),全局new操作符由C++默认提供。因此前面的两步也就是:1.调用operator new 2.调用构造函数。

5.乐观锁与悲观锁

答:悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它自己拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。

乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。

两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下,即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果经常产生冲突,上层应用会不断的进行retry,这样反倒是降低了性能,所以这种情况下用悲观锁就比较合适。

6.类外部访问权限

答:
A.在无继承的情况下,类内部可以随意访问,即使是private;类外部无法访问protected/private成员 .

B.在有继承的情况下,(先确定类继承方式,再确定继承后子类的新成员属性,最后确定子类内部/外部的访问权限:此时即使是在子类的内部也不能访问父类的private )

1.若是public继承的话,父类的public/protected/private属性继承到子类时,均不会变化(新成员)在子类内部访问时,无法访问父类的private(对比:在无继承时,类内可随便访问)在子类外部访问时,无法访问子类的新成员protected/private

2.若是protected继承的话,父类的public/protected/private属性继承到子类时,会变化为(新成员)protected/protected/private在子类内部访问时,无法访问父类的private(对比:在无继承时,类内可随便访问)在子类外部访问时,无法访问子类的新成员protected/private

3.若是private继承的话,父类的public/protected/private属性继承到子类时,会变化为(新成员)private/private/private在子类内部访问时,无法访问父类的private(对比:在无继承时,类内可随便访问)在子类外部访问时,无法访问子类的新成员protected/private

7.解决哈希冲突

答:
哈希表:是数组和链表的结合体。
常见嵌入式面试题之C++基础篇 ——第1期_第1张图片
通过哈希函数产生的哈希值是有限的,而数据可能比较多,导致经过哈希函数处理后仍然有不同的数据对应相同的值。这时候就产生了哈希冲突。
1.开放地址方法
(1)线性探测
按顺序决定值时,如果某数据的值已经存在,则在原来值的基础上往后加一个单位,直至不发生哈希冲突。 
(2)再平方探测
按顺序决定值时,如果某数据的值已经存在,则在原来值的基础上先加1的平方个单位,若仍然存在则减1的平方个单位。随之是2的平方,3的平方等等。直至不发生哈希冲突。
(3)伪随机探测
按顺序决定值时,如果某数据已经存在,通过随机函数随机生成一个数,在原来值的基础上加上随机数,直至不发生哈希冲突。

2.链式地址法(HashMap的哈希冲突解决方法)
对于相同的值,使用链表进行连接。使用数组存储每一个链表。
优点:
(1)拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;
(2)由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;
(3)开放定址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间;
(4)在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。
缺点:
指针占用较大空间时,会造成空间浪费,若空间用于增大散列表规模进而提高开放地址法的效率。
3.建立公共溢出区
建立公共溢出区存储所有哈希冲突的数据。
4.再哈希法
对于冲突的哈希值再次进行哈希处理,直至没有哈希冲突。

8.map和unordermap的区别

答: 内部实现机理不同
map: map内部实现了一个红黑树(红黑树是非严格平衡二叉搜索树,而AVL是严格平衡二叉搜索树),红黑树具有自动排序的功能,因此map内部的所有元素都是有序的,红黑树的每一个节点都代表着map的一个元素。因此,对于map进行的查找,删除,添加等一系列的操作都相当于是对红黑树进行的操作。map中的元素是按照二叉搜索树(又名二叉查找树、二叉排序树,特点就是左子树上所有节点的键值都小于根节点的键值,右子树所有节点的键值都大于根节点的键值)存储的,使用中序遍历可将键值按照从小到大遍历出来。
unordered_map: unordered_map内部实现了一个哈希表(也叫散列表,通过把关键码值映射到Hash表中一个位置来访问记录,查找的时间复杂度可达到O(1),其在海量数据处理中有着广泛应用)。因此,其元素的排列顺序是无序的。

优缺点以及适用处
map:
优点:
有序性,这是map结构最大的优点,其元素的有序性在很多应用中都会简化很多的操作
红黑树,内部实现一个红黑书使得map的很多操作在lgn的时间复杂度下就可以实现,因此效率非常的高
缺点: 空间占用率高,因为map内部实现了红黑树,虽然提高了运行效率,但是因为每一个节点都需要额外保存父节点、孩子节点和红/黑性质,使得每一个节点都占用大量的空间
适用处:对于那些有顺序要求的问题,用map会更高效一些

unordered_map:
优点: 因为内部实现了哈希表,因此其查找速度非常的快
缺点: 哈希表的建立比较耗费时间
适用处:对于查找问题,unordered_map会更加高效一些,因此遇到查找问题,常会考虑一下用unordered_map
总结:
内存占有率的问题就转化成红黑树 VS hash表 , 还是unorder_map占用的内存要高。
但是unordered_map执行效率要比map高很多
对于unordered_map或unordered_set容器,其遍历顺序与创建该容器时输入的顺序不一定相同,因为遍历是按照哈希表从前往后依次遍历的
map和unordered_map的使用
unordered_map的用法和map是一样的,提供了 insert,size,count等操作,并且里面的元素也是以pair类型来存贮的。其底层实现是完全不同的,上方已经解释了,但是就外部使用来说却是一致的。

9. set和unordered_set

答:set()是一种包含已排序对象的关联容器。 set集合容器实现了红黑树(Red-Black Tree)的平衡二叉检索树的数据结构,在插入元素时,它会自动调整二叉树的排列,把元素放到适当的位置,它不会插入相同键值的元素,而采取忽略处理。可以用来排序。

unordered_set()描述大体如下:无序集合容器(unordered_set)是一个存储唯一(unique,即无重复)的关联容器(Associative container),容器中的元素无特别的秩序关系,该容器允许基于值的快速元素检索,同时也支持正向迭代。
在一个unordered_set内部,元素不会按任何顺序排序,而是通过元素值的hash值将元素分组放置到各个槽(Bucker,也可以译为“桶”),这样就能通过元素值快速访问各个对应的元素(均摊耗时为O(1))。
问题描述:和为S的两个数字
输入一个数组和一个数字s,在数组中查找两个数,使得它们的和正好是s。
如果有多对数字的和等于s,输出任意一对即可。
你可以认为每组输入中都至少含有一组满足条件的输出。
样例
输入:[1,2,3,4] , sum=7
输出:[3,4]

/*哈希表
unordered_set,当只需要统计一种状态或者说没有关联元素的时候可以使用set
*/
class Solution {
public:
    vector<int> findNumbersWithSum(vector<int>& nums, int target) {
        unordered_set<int> hash;
        for(int i=0;i<nums.size();i++)
        {
            if(hash.count(target-nums[i])) return vector<int> {target-nums[i],nums[i]};
            //向表中添加数值
            hash.insert(nums[i]);
        }
        
    }
};

10.new和malloc的区别

答:
1).malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存
2).对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。
3).因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。
4).C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。
5).new可以认为是malloc加构造函数的执行。new出来的指针是直接带类型信息的。而malloc返回的都是void*指针。
new delete在实现上其实调用了malloc,free函数
6).new建立的对象你可以把它当成一个普通的对象,用成员函数访问,不要直接访问它的地址空间;malloc分配的是一块内存区域,就用指针访问好了,而且还可以在里面移动指针.
7).new 建立的是一个对象;alloc分配的是一块内存.
8).内存区域
new操作符从自由存储区(free store)上为对象动态分配内存空间,而malloc函数从堆上动态分配内存。自由存储区是C++基于new操作符的一个抽象概念,凡是通过new操作符进行内存申请,该内存即为自由存储区。而堆是操作系统中的术语,是操作系统所维护的一块特殊内存,用于程序的内存动态分配,C语言使用malloc从堆上分配内存,使用free释放已分配的对应内存。自由存储区不等于堆,如上所述,布局new就可以不位于堆中。

相同点:都可用于申请动态内存和释放内存
不同点:
(1)操作对象有所不同。
malloc与free是C++/C 语言的标准库函数,new/delete 是C++的运算符。对于非内部数据类的对象而言,光用maloc/free 无法满足动态对象的要求。对象在创建的同时要自动执行构造函数, 对象消亡之前要自动执行析构函数。由于malloc/free 是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加malloc/free。

(2)在用法上也有所不同。
函数malloc 的原型如下:
void * malloc(size_t size);
用malloc 申请一块长度为length 的整数类型的内存,程序如下:
int *p = (int *) malloc(sizeof(int) * length);
我们应当把注意力集中在两个要素上:“类型转换”和“sizeof”。
malloc 返回值的类型是void *,所以在调用malloc 时要显式地进行类型转换,将void * 转换成所需要的指针类型。
malloc 函数本身并不识别要申请的内存是什么类型,它只关心内存的总字节数。

函数free 的原型如下:
void free( void * memblock );
为什么free 函数不象malloc 函数那样复杂呢?这是因为指针p 的类型以及它所指的内存的容量事先都是知道的,语句free§能正确地释放内存。如果p 是NULL 指针,那么free对p 无论操作多少次都不会出问题。如果p 不是NULL 指针,那么free 对p连续操作两次就会导致程序运行错误。

new/delete 的使用要点
运算符new 使用起来要比函数malloc 简单得多,例如:
int p1 = (int )malloc(sizeof(int) * length);
int p2 = new int[length];
这是因为new 内置了sizeof、类型转换和类型安全检查功能。对于非内部数据类型的对象而言,new 在创建动态对象的同时完成了初始化工作。如果对象有多个构造函数,那么new 的语句也可以有多种形式。
1).new自动计算需要分配的空间,而malloc需要手工计算字节数
2).new是类型安全的,而malloc不是,比如:
int
p = new float[2]; // 编译时指出错误
int
p = malloc(2
sizeof(float)); // 编译时无法指出错误
new operator 由两步构成,分别是 operator new 和 construct
3).operator new对应于malloc,但operator new可以重载,可以自定义内存分配策略,甚至不做内存分配,甚至分配到非内存设备上。而malloc无能为力
4).new将调用constructor,而malloc不能;delete将调用destructor,而free不能。
5).malloc/free要库文件支持,new/delete则不要。

11.什么是平衡二叉树

答:左右子树都是平衡二叉树 且左右子树的深度差值的绝对值不大于1。

12.局部变量能否和全局变量重名?

答:能,局部会屏蔽全局。要用全局变量,需要使用"::"
局部变量可以与全局变量同名,在函数内引用这个变量时,会用到同名的局部变量,而不会用到全局变量。对于有些编译器而言,在同一个函数内可以定义多个同名的局部变量,比如在两个循环体内都定义一个同名的局部变量,而那个局部变量的作用域就在那个循环体内。

13.对于一个频繁使用的短小函数,在C语言中应用什么实现,在C++中应用什么实现?

答:c用宏定义,c++用inline;
inline是C++关键字,在函数声明或定义中,函数返回类型前加上关键字inline,即可以把函数指定为内联函数。这样可以解决一些频繁调用的函数大量消耗栈空间(栈内存)的问题。关键字inline必须与函数定义放在一起才能使函数成为内联函数,仅仅将inline放在函数声明前面不起任何作用。inline是一种“用于实现”的关键字,而不是一种“用于声明”的关键字。
inline关键字用来定义一个类的内联函数,引入它的主要原因是用它替代C中表达式形式的宏定义。
表达式形式的宏定义如:
#define ExpressionName(Var1,Var2) ((Var1)+(Var2))*((Var1)-(Var2))
取代这种形式的原因如下:
1.C中使用define这种形式宏定义的原因是因为,C语言是一个效率很高的语言,这种宏定义在形式及使用上像一个函数,但它使用预处理器实现,没有了参数压栈,代码生成等一系列的操作。因此,效率很高,这是它在C中被使用的一个主要原因。
2.这种宏定义在形式上类似于一个函数,但在使用它时,仅仅只是做预处理器符号表中的简单替换,因此它不能进行参数有效性的检测,也就不能享受C++编译器严格类型检查的好处,另外它的返回值也不能被强制转换为可转换的合适的类型。这样,它的使用就存在着一系列的隐患和局限性。
3.在C++中引入了类及类的访问控制,这样,如果一个操作或者说一个表达式涉及到类的保护成员或私有成员,你就不可能使用这种宏定义来实现(因为无法将this指针放在合适的位置)。
4.inline推出的目的,也正是为了取代这种表达式形式的宏定义,它消除了宏定义的缺点,同时又很好地继承了宏定义的优点。

14.什么是多态(延伸)

答:父类指针指向子类对象,如果有virtual的话,根据动态类型的绑定,指向父类的指针还是会调用子类实现了的虚函数。
一.
C++的多态性用一句话概括就是:在基类的函数前加上virtual关键字,在派生类中重写该函数,运行时将会根据对象的实际类型来调用相应的函数。如果对象类型是派生类,就调用派生类的函数;如果对象类型是基类,就调用基类的函数。
1:用virtual关键字申明的函数叫做虚函数,虚函数肯定是类的成员函数。
2:存在虚函数的类都有一个一维的虚函数表叫做虚表,类的对象有一个指向虚表开始的虚指针。虚表是和类对应的,虚表指针是和对象对应的。
3:多态性是一个接口多种实现,是面向对象的核心,分为类的多态性和函数的多态性。
4:多态用虚函数来实现,结合动态绑定.
5:纯虚函数是虚函数再加上 = 0;
6:抽象类是指包括至少一个纯虚函数的类。
纯虚函数:virtual void fun()=0;即抽象类!必须在子类实现这个函数,即先有名称,没有内容,在派生类实现内容。
7:函数override必须要返回值一样、函数名一样和参数一样。(虚函数重写)

Overload(重载):在C++程序中,可以将语义、功能相似的几个函数用同一个名字表示,但参数或返回值不同(包括类型、顺序不同),即函数重载。
(1)相同的范围(在同一个类中);
(2)函数名字相同;
(3)参数不同;
(4)virtual 关键字可有可无。

Override(覆盖):是指派生类函数覆盖基类函数,特征是:
(1)不同的范围(分别位于派生类与基类);
(2)函数名字相同;
(3)参数相同;
(4)基类函数必须有virtual 关键字。
注:重写基类虚函数的时候,会自动转换这个函数为virtual函数,不管有没有加virtual,因此重写的时候不加virtual也是可以的,不过为了易读性,还是加上比较好。

Overwrite(重写):隐藏,是指派生类的函数屏蔽了与其同名的基类函数,规则如下:
范围也是在不同类中的
(1)如果派生类的函数与基类的函数同名,但是参数不同。此时,不论有无virtual关键字,基类的函数将被隐藏(注意别与重载混淆)。
(2)如果派生类的函数与基类的函数同名,并且参数也相同,但是基类函数没有virtual关键字。此时,基类的函数被隐藏(注意别与覆盖混淆)。

二.析构函数重写问题
基类中的析构函数如果是虚函数,那么派生类的析构函数就重写了基类的析构函数。这里他们的函数名不相同,看起来违背了重写的规则,其实不然,这里可以理解为编译器对析构函数的名称做了特殊处理,编译后析构函数的名称统一处理成destructor,这也说明的基类的析构函数最好写成虚函数。
将析构函数定义为虚函数的原因:
内存泄漏
因为基类指针可能指向派生类,当delete的时候,如果不定为虚函数,系统会直接调用基类的析构函数,这个时候派生类就有一部分没有被释放,就会造成可怕的内存泄漏问题。
所以!在继承的时候,尽量把基类的析构函数定义为虚函数,这样继承下去的派生类的析构函数也会被变成虚函数构成多态。
三.
抽象类
在虚函数的后面写上 = 0,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫接口类),抽象类不能实例化出对象。只有在重写基类中所有纯虚函数才可以产生对象。派生类继承后也不能实例化出对象。只有重写纯虚函数,派生类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现了接口继承。

15.面向接口编程和面向对象编程的区别

答:首先,面向接口编程和面向对象编程并不是平级的,它并不是比面向对象编程更先进的一种独立的编程思想,而是附属于面向对象思想体系,属于其一部分。或者说,它是面向对象编程体系中的思想精髓之一。
转载:面向接口编程详解(一)——思想基础

16.C++类模板

答:vector是类模板,vector是类。vi是vector类的对象
(1) 什么是类模板
一个类模板(也称为类属类或类生成类)允许用户为类定义一种模式,使得类中的某些数据成员、默认成员函数的参数、某些成员函数的返回值,能够取任意类型(包括系统预定义的和用户自定义的)。
如果一个类中数据成员的数据类型不能确定,或者是某个成员函数的参数或返回值的类型不能确定,就必须将此类声明为模板,它的存在不是代表一个具体的、实际的类,而是代表着一类类。
(2)类模板定义
template classfoo { …… }
3)类模板的使用。类模板的使用实际上是将类模板实例化成一个具体的类,它的格式为:类名<实际的类型>.
模板类是类模板实例化后的一个产物。说个形象点的例子吧。我们把类模板比作一个做饼干的模子,而模板类就是用这个模子做出来的饼干,至于这个饼干是什么味道的就要看你自己在实例化时用的是什么材料了,你可以做巧克力饼干,也可以做豆沙饼干,这些饼干的除了材料不一样外,其他的东西都是一样的了。
(4)模板类:是对一批仅仅成员数据类型不同的类的抽象,程序员只要为这一批类所组成的整个类家族创建一个类模板,给出一套程序代码,就可以用来生成多种具体的类,(这类可以看作是类模板的实例),从而大大提高编程的效率。

17.C/C++中auto的理解

答:C语言和C++中auto关键字的使用有很大区别。在C语言中使用auto关键字声明一个变量为自动变量,是C语言中应用最广泛的一种类型,在函数内定义变量时,如果没有被声明为其他类型的变量都是自动变量,也就是说,省去类型说明符auto的都是自动变量。这里的其他类型指的是变量的存储类型即:静态类型变量(static )、寄存器类型变量(register)和外部类型变量(extern)。
void Test()
{
auto int x = 10; //定义自动变量x,auto可以省略
int y; //y和z都为自动变量,如果省略了auto 关键字则隐含表示为auto类型
double z;

}
C++中的auto关键字
C++中的auto关键字是一个类型说明符,通过变量的初始值或者表达式中参与运算的数据类型来推断变量的类型。编程时通常需要把表达式值式赋给变量,这就要求在声明变量时清楚的知道表达式的类型,C++11新标准引入了auto 类型说明符,让编译器去分析表达式的类型。由于,需要编译器推断变量或表达式的类型,所以,auto定义的变量必须初始化。例如:

auto val = 5.2f; //编译器会根据初始化的值来推断val的数据类型为flaot,但要注意如果去掉f则编译器会认为val为double型变量
auto x = y + z; //x初始化为y和z相加的结果,由y和z的数据类型推断x的数据类型
auto num; //但如果在C++中出现这样的语句,会编译报错,提示“类型包含“auto符号”必须具有初始值设定项”

18.函数重载

答:同名函数,参数不同
同一作用域中声明几个类似的同名函数,这些同名函数的形参列表(参数个数,类型,顺序)必须不同,常用来处理实现功能类似数据类型不同的问题。

函数重载的规则:
函数名称必须相同。
参数列表必须不同(个数不同、类型不同、参数排列顺序不同等)。
函数的返回类型可以相同也可以不相同。
仅仅返回类型不同不足以成为函数的重载。

三、函数重载是一种静态多态:
(1)多态:用同一个东西表示不同的形态;
(2)多态分为:
静态多态(编译时的多态);
动态多态(运行时的多态);
(3)函数重载是一种静态多态;

19.什么是静态多态和动态多态

答:动态多态:用父类指针指向子类对象
动态多态(动态绑定):即运行时的多态,在程序执行期间(非编译期)判断所引用对象的实际类型,根动态绑定
1.通过基类类型的引用或者指针调用虚函数据其实际类型调用相应的方法。
在基类的函数前加上virtual关键字,在派生类中重写该函数,运行时将会根据对象的实际类型来调用相应的函数
虽然静态绑定类型是基类,但是调用带有virtual关键字的函数为子类实现。这就是运行时的绑定

静态多态
静态多态:也称为编译期间的多态,编译器在编译期间完成的,编译器根据函数实参的类型(可能会进行隐式类型转换),可推断出要调用那个函数,如果有对应的函数就调用该函数,否则出现编译错误。
静态多态有两种实现方式:
函数重载:包括普通函数的重载和成员函数的重载
函数模板的使用

20.进程线程,共享了什么,线程独有什么

答:进程是系统进行资源分配和调度的一个独立单位。
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。
进程在执行过程中拥有独立的内存单元,而该进程的多个线程共享内存,从而极大地提高了程序的运行效率。
线程共享的环境包括:
1.进程代码段
2.进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)
3.进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。
线程独立的资源包括:
1.线程ID
2.寄存器组的值
由于线程间是并发运行的,每个线程有自己不同的运行线索,当从一个线程切换到另一个线程上 时,必须将原有的线程的寄存器集合的状态保存,以便将来该线程在被重新切换到时能得以恢复。
3.线程的堆栈
堆栈是保证线程独立运行所必须的。线程函数可以调用函数,而被调用函数中又是可以层层嵌套的,所以线程必须拥有自己的函数堆栈, 使得函数调用可以正常执行,不受其他线程的影响。
4.错误返回码
由于同一个进程中有很多个线程在同时运行,可能某个线程进行系统调用后设置了errno值,而在该 线程还没有处理这个错误,另外一个线程就在此时被调度器投入运行,这样错误值就有可能被修改。所以,不同的线程应该拥有自己的错误返回码变量。
5.线程的信号屏蔽码
由于每个线程所感兴趣的信号不同,所以线程的信号屏蔽码应该由线程自己管理。但所有的线程都共享同样的信号处理器。
6.线程的优先级
由于线程需要像进程那样能够被调度,那么就必须要有可供调度使用的参数,这个参数就是线程的优先级。

总结

近期会整理嵌入式面试相关问题,包含C语言、C++以Linux操作系统。之后会陆续更新基于以上三部分内容中的重点问题进行整理。
如果博客内容有不严谨或错误的部分,请及时评论或私信,本人将第一时间进行补充与更正!

你可能感兴趣的:(嵌入式面试问题系列,c++,面试)