题目大意
给定一棵BST树的先序遍历,再给出任意两个节点(不一定存在该节点),让你输出两个节点的最低公共祖先。
思路解析
本题有两种做法,下面分别介绍:
1. 法一:见到BST就要想到中序遍历、从小到大、先序还原的特性。但本题难就难在先序还原上。以前的做法都是按照先序序列逐个insert,但如果对于一棵单支树,也就是最差的情况复杂度将会上升到N的平方级。所以本题不能通过该方法建树,而是采用最原始的先序中序序列建树,这种方法可以降为logN。剩下的lca操作不变。
另外lca的普通解法附在了末尾,该方法同样也不会超时,需要掌握。
3. 法二:第二种就是投机取巧,如果在考场上大脑还足够活跃的话可以试试该法:在BST中两个节点与最低公共祖先必然是单调的。所以,从先序中找到第一个满足关系: u < pre[j] < v 的节点就是所求答案。
示例代码(法一)
#include
#include
#include
#include
using namespace std;
struct node{
public:
int val;
struct node* left, *right;
};
vector<int> pre, inorder;
node* build(node* tree, int l1, int r1, int l2, int r2) {
if (l1 > r1) return NULL;
if (l1 == r1) {
node* nod = new node();
nod->val = pre[l1];
return nod;
}
int cnt = 0;
int root;
for (root = l2; root <= r2; root++) {
cnt++;
if (inorder[root] == pre[l1]) break;
}
tree = new node();
tree->val = inorder[root];
tree->left = build(tree->left, l1 + 1, l1 + cnt - 1, l2, root - 1);
tree->right = build(tree->right, l1 + cnt, r1, root + 1, r2);
return tree;
}
node* lca(node* tree, int a, int b) {
if (tree->val < a) return lca(tree->right, a, b);
if (tree->val > b) return lca(tree->left, a, b);
return tree;
}
int main() {
int m, n;
scanf("%d %d", &m, &n);
pre.resize(n);
inorder.resize(n);
unordered_map<int, bool> mapp;
node* tree = NULL;
for (int i = 0; i < n; i++) {
int val;
scanf("%d", &val);
pre[i] = val;
mapp[val] = true;
}
inorder = pre;
sort(inorder.begin(), inorder.end());
tree = build(tree, 0, n - 1, 0, n - 1);
for (int i = 0; i < m; i++) {
int a, b;
scanf("%d %d", &a, &b);
if (mapp[a] == false && mapp[b] == false) {
printf("ERROR: %d and %d are not found.\n", a, b);
}
else if (mapp[a] == false) {
printf("ERROR: %d is not found.\n", a);
}
else if (mapp[b] == false) {
printf("ERROR: %d is not found.\n", b);
}
else {
node* root = lca(tree, min(a, b), max(a, b));
if (root->val == a || root->val == b) {
printf("%d is an ancestor of %d.\n", root->val, root->val == a ? b : a);
}
else {
printf("LCA of %d and %d is %d.\n", a, b, root->val);
}
}
}
return 0;
}
示例代码(法二)
#include
#include
#include
#include
using namespace std;
int main() {
int m, n;
scanf("%d %d", &m, &n);
vector<int> vec(n);
map<int, int> order;
for (int i = 0; i < n; i++) {
scanf("%d", &vec[i]);
order[vec[i]] = i;
}
for (int i = 0; i < m; i++) {
int a, b;
scanf("%d %d", &a, &b);
int mi = min(a, b);
int ma = max(a, b);
if (order.find(a) == order.end() && order.find(b) == order.end()) {
printf("ERROR: %d and %d are not found.\n", a, b);
}
else if (order.find(a) == order.end()) {
printf("ERROR: %d is not found.\n", a);
}
else if (order.find(b) == order.end()) {
printf("ERROR: %d is not found.\n", b);
}
else {
bool flag = true;
int root;
for (int j = 0; j < n; j++) {
root = vec[j];
if (root >= mi && root <= ma) {
break;
}
}
if (root == a || root == b) {
printf("%d is an ancestor of %d.\n", root, root == a ? b : a);
}
else {
printf("LCA of %d and %d is %d.\n", a, b, root);
}
}
}
return 0;
}
LCA
node* lca(node* tree,int a, int b) {
if (tree == NULL) return NULL;
if (tree->val == a || tree->val == b) {
return tree;
}
node* l = lca(tree->left, a, b);
node* r = lca(tree->right, a, b);
if (l != NULL &&r != NULL) {
return tree;
}
if (l != NULL) {
return l;
}
if (r != NULL) {
return r;
}
return NULL;
}