本文为转载,自python merge、concat合并数据集
数据规整化:合并、清理、过滤
pandas和python标准库提供了一整套高级、灵活的、高效的核心函数和算法将数据规整化为你想要的形式!
本篇博客主要介绍:
合并数据集:.merge()、.concat()等方法,类似于SQL或其他关系型数据库的连接操作。
合并数据集
1) merge 函数参数
参数 |
说明 |
left |
参与合并的左侧DataFrame |
right |
参与合并的右侧DataFrame |
how |
连接方式:‘inner’(默认);还有,‘outer’、‘left’、‘right’ |
on |
用于连接的列名,必须同时存在于左右两个DataFrame对象中,如果位指定,则以left和right列名的交集作为连接键 |
left_on |
左侧DataFarme中用作连接键的列 |
right_on |
右侧DataFarme中用作连接键的列 |
left_index |
将左侧的行索引用作其连接键 |
right_index |
将右侧的行索引用作其连接键 |
sort |
根据连接键对合并后的数据进行排序,默认为True。有时在处理大数据集时,禁用该选项可获得更好的性能 |
suffixes |
字符串值元组,用于追加到重叠列名的末尾,默认为(‘_x’,‘_y’).例如,左右两个DataFrame对象都有‘data’,则结果中就会出现‘data_x’,‘data_y’ |
copy |
设置为False,可以在某些特殊情况下避免将数据复制到结果数据结构中。默认总是赋值 |
1、多对一的合并(一个表的连接键列有重复值,另一个表中的连接键没有重复值)
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1': range(7)})
df1
|
data1 |
key |
0 |
0 |
b |
1 |
1 |
b |
2 |
2 |
a |
3 |
3 |
c |
4 |
4 |
a |
5 |
5 |
a |
6 |
6 |
b |
df2 = pd.DataFrame({'key':['a','b','d'],'data2':range(3)})
df2
|
data2 |
key |
0 |
0 |
a |
1 |
1 |
b |
2 |
2 |
d |
pd.merge(df1,df2)#默认情况
|
data1 |
key |
data2 |
0 |
0 |
b |
1 |
1 |
1 |
b |
1 |
2 |
6 |
b |
1 |
3 |
2 |
a |
0 |
4 |
4 |
a |
0 |
5 |
5 |
a |
0 |
df1.merge(df2)
|
data1 |
key |
data2 |
0 |
0 |
b |
1 |
1 |
1 |
b |
1 |
2 |
6 |
b |
1 |
3 |
2 |
a |
0 |
4 |
4 |
a |
0 |
5 |
5 |
a |
0 |
df1.merge(df2,on = 'key',how = 'inner')#内连接,取交集
|
data1 |
key |
data2 |
0 |
0 |
b |
1 |
1 |
1 |
b |
1 |
2 |
6 |
b |
1 |
3 |
2 |
a |
0 |
4 |
4 |
a |
0 |
5 |
5 |
a |
0 |
df1.merge(df2,on = 'key',how = 'outer')#外链接,取并集,并用nan填充
|
data1 |
key |
data2 |
0 |
0.0 |
b |
1.0 |
1 |
1.0 |
b |
1.0 |
2 |
6.0 |
b |
1.0 |
3 |
2.0 |
a |
0.0 |
4 |
4.0 |
a |
0.0 |
5 |
5.0 |
a |
0.0 |
6 |
3.0 |
c |
NaN |
7 |
NaN |
d |
2.0 |
df1.merge(df2,on = 'key',how = 'left')#左连接,左侧DataFrame取全部,右侧DataFrame取部分
|
data1 |
key |
data2 |
0 |
0 |
b |
1.0 |
1 |
1 |
b |
1.0 |
2 |
2 |
a |
0.0 |
3 |
3 |
c |
NaN |
4 |
4 |
a |
0.0 |
5 |
5 |
a |
0.0 |
6 |
6 |
b |
1.0 |
df1.merge(df2,on = 'key',how = 'right')#右连接,右侧DataFrame取全部,左侧DataFrame取部分
|
data1 |
key |
data2 |
0 |
0.0 |
b |
1 |
1 |
1.0 |
b |
1 |
2 |
6.0 |
b |
1 |
3 |
2.0 |
a |
0 |
4 |
4.0 |
a |
0 |
5 |
5.0 |
a |
0 |
6 |
NaN |
d |
2 |
如果左右侧DataFrame的连接键列名不一致,但是取值有重叠,可使用left_on、right_on来指定左右连接键
df3 = pd.DataFrame({'lkey':['b','b','a','c','a','a','b'],'data1': range(7)})
df3
|
data1 |
lkey |
0 |
0 |
b |
1 |
1 |
b |
2 |
2 |
a |
3 |
3 |
c |
4 |
4 |
a |
5 |
5 |
a |
6 |
6 |
b |
df4 = pd.DataFrame({'rkey':['a','b','d'],'data2':range(3)})
df4
|
data2 |
rkey |
0 |
0 |
a |
1 |
1 |
b |
2 |
2 |
d |
df3.merge(df4,left_on = 'lkey',right_on = 'rkey',how = 'inner')
|
data1 |
lkey |
data2 |
rkey |
0 |
0 |
b |
1 |
b |
1 |
1 |
b |
1 |
b |
2 |
6 |
b |
1 |
b |
3 |
2 |
a |
0 |
a |
4 |
4 |
a |
0 |
a |
5 |
5 |
a |
0 |
a |
2、多对多的合并(一个表的连接键列有重复值,另一个表中的连接键有重复值)
df1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1': range(7)})
df1
|
data1 |
key |
0 |
0 |
b |
1 |
1 |
b |
2 |
2 |
a |
3 |
3 |
c |
4 |
4 |
a |
5 |
5 |
a |
6 |
6 |
b |
df5 = pd.DataFrame({'key':['a','b','a','b','b'],'data2': range(5)})
df5
|
data2 |
key |
0 |
0 |
a |
1 |
1 |
b |
2 |
2 |
a |
3 |
3 |
b |
4 |
4 |
b |
df1.merge(df5)
|
data1 |
key |
data2 |
0 |
0 |
b |
1 |
1 |
0 |
b |
3 |
2 |
0 |
b |
4 |
3 |
1 |
b |
1 |
4 |
1 |
b |
3 |
5 |
1 |
b |
4 |
6 |
6 |
b |
1 |
7 |
6 |
b |
3 |
8 |
6 |
b |
4 |
9 |
2 |
a |
0 |
10 |
2 |
a |
2 |
11 |
4 |
a |
0 |
12 |
4 |
a |
2 |
13 |
5 |
a |
0 |
14 |
5 |
a |
2 |
合并小结
1)默认情况下,会将两个表中相同列名作为连接键
2)多对多,会采用笛卡尔积形式链接(左表连接键有三个值‘1,3,5’,右表有两个值‘2,3’,则会形成,(1,2)(1,3)(3,1),(3,2)。。。6种组合)
3)存在多个连接键的处理
left = pd.DataFrame({'key1':['foo','foo','bar'],'key2':['one','one','two'],'lval':[1,2,3]})
right = pd.DataFrame({'key1':['foo','foo','bar','bar'],'key2':['one','one','one','two'],'rval':[4,5,6,7]})
left
|
key1 |
key2 |
lval |
0 |
foo |
one |
1 |
1 |
foo |
one |
2 |
2 |
bar |
two |
3 |
right
|
key1 |
key2 |
rval |
0 |
foo |
one |
4 |
1 |
foo |
one |
5 |
2 |
bar |
one |
6 |
3 |
bar |
two |
7 |
pd.merge(left,right,on = ['key1','key2'],how = 'outer')
|
key1 |
key2 |
lval |
rval |
0 |
foo |
one |
1.0 |
4 |
1 |
foo |
one |
1.0 |
5 |
2 |
foo |
one |
2.0 |
4 |
3 |
foo |
one |
2.0 |
5 |
4 |
bar |
two |
3.0 |
7 |
5 |
bar |
one |
NaN |
6 |
1)连接键是多对多关系,应执行笛卡尔积形式
2)多列应看连接键值对是否一致
4)对连接表中非连接列的重复列名的处理
pd.merge(left,right,on = 'key1')
|
key1 |
key2_x |
lval |
key2_y |
rval |
0 |
foo |
one |
1 |
one |
4 |
1 |
foo |
one |
1 |
one |
5 |
2 |
foo |
one |
2 |
one |
4 |
3 |
foo |
one |
2 |
one |
5 |
4 |
bar |
two |
3 |
one |
6 |
5 |
bar |
two |
3 |
two |
7 |
pd.merge(left,right,on = 'key1',suffixes = ('_left','_right'))
|
key1 |
key2_left |
lval |
key2_right |
rval |
0 |
foo |
one |
1 |
one |
4 |
1 |
foo |
one |
1 |
one |
5 |
2 |
foo |
one |
2 |
one |
4 |
3 |
foo |
one |
2 |
one |
5 |
4 |
bar |
two |
3 |
one |
6 |
5 |
bar |
two |
3 |
two |
7 |
2)索引上的合并
当连接键位于索引中时,成为索引上的合并,可以通过merge函数,传入left_index、right_index来说明应该被索引的情况。
- 一表中连接键是索引列、另一表连接键是非索引列
left1 = pd.DataFrame({'key':['a','b','a','a','b','c'],'value': range(6)})
left1
|
key |
value |
0 |
a |
0 |
1 |
b |
1 |
2 |
a |
2 |
3 |
a |
3 |
4 |
b |
4 |
5 |
c |
5 |
right1 = pd.DataFrame({'group_val':[3.5,7]},index = ['a','b'])
right1
pd.merge(left1,right1,left_on = 'key',right_index = True)
|
key |
value |
group_val |
0 |
a |
0 |
3.5 |
2 |
a |
2 |
3.5 |
3 |
a |
3 |
3.5 |
1 |
b |
1 |
7.0 |
4 |
b |
4 |
7.0 |
有上可知,left_on、right_on是指定表中非索引列为连接键,left_index、right_index是指定表中索引列为连接键,两者可以组合,是为了区分是否是索引列
- 两个表中的索引列都是连接键
left2 = pd.DataFrame(np.arange(6).reshape(3,2),index = ['a','b','e'],columns = ['0hio','nevada'])
right2 = pd.DataFrame(np.arange(7,15).reshape(4,2),index = ['b','c','d','e'],columns = ['misso','ala'])
left2
|
0hio |
nevada |
a |
0 |
1 |
b |
2 |
3 |
e |
4 |
5 |
right2
|
misso |
ala |
b |
7 |
8 |
c |
9 |
10 |
d |
11 |
12 |
e |
13 |
14 |
pd.merge(left2,right2,left_index = True,right_index = True,how = 'outer')
|
0hio |
nevada |
misso |
ala |
a |
0.0 |
1.0 |
NaN |
NaN |
b |
2.0 |
3.0 |
7.0 |
8.0 |
c |
NaN |
NaN |
9.0 |
10.0 |
d |
NaN |
NaN |
11.0 |
12.0 |
e |
4.0 |
5.0 |
13.0 |
14.0 |
3)轴向连接
在这里展示一种新的连接方法,对应于numpy的concatenate函数,pandas有concat函数
#numpy
arr =np.arange(12).reshape(3,4)
arr
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
np.concatenate([arr,arr],axis = 1)#横轴连接块
array([[ 0, 1, 2, 3, 0, 1, 2, 3],
[ 4, 5, 6, 7, 4, 5, 6, 7],
[ 8, 9, 10, 11, 8, 9, 10, 11]])
concat函数参数表格
参数 |
说明 |
objs |
参与连接的列表或字典,且列表或字典里的对象是pandas数据类型,唯一必须给定的参数 |
axis=0 |
指明连接的轴向,0是纵轴,1是横轴,默认是0 |
join |
‘inner’(交集),‘outer’(并集),默认是‘outer’指明轴向索引的索引是交集还是并集 |
join_axis |
指明用于其他n-1条轴的索引(层次化索引,某个轴向有多个索引),不执行交并集 |
keys |
与连接对象有关的值,用于形成连接轴向上的层次化索引(外层索引),可以是任意值的列表或数组、元组数据、数组列表(如果将levels设置成多级数组的话) |
levels |
指定用作层次化索引各级别(内层索引)上的索引,如果设置keys的话 |
names |
用于创建分层级别的名称,如果设置keys或levels的话 |
verify_integrity |
检查结果对象新轴上的重复情况,如果发横则引发异常,默认False,允许重复 |
ignore_index |
不保留连接轴上的索引,产生一组新索引range(total_length) |
s1 = pd.Series([0,1,2],index = ['a','b','c'])
s2 = pd.Series([2,3,4],index = ['c','f','e'])
s3 = pd.Series([4,5,6],index = ['c','f','g'])
pd.concat([s1,s2,s3])#默认并集、纵向连接
a 0 b 1 c 2 c 2 f 3 e 4 c 4 f 5 g 6 dtype: int64
pd.concat([s1,s2,s3],ignore_index = True)#生成纵轴上的并集,索引会自动生成新的一列
0 0 1 1 2 2 3 2 4 3 5 4 6 4 7 5 8 6 dtype: int64
pd.concat([s1,s2,s3],axis = 1,join = 'inner')#纵向取交集,注意该方法对对象表中有重复索引时失效
pd.concat([s1,s2,s3],axis = 1,join = 'outer')#横向索引取并集,纵向索引取交集,注意该方法对对象表中有重复索引时失效
|
0 |
1 |
2 |
a |
0.0 |
NaN |
NaN |
b |
1.0 |
NaN |
NaN |
c |
2.0 |
2.0 |
4.0 |
e |
NaN |
4.0 |
NaN |
f |
NaN |
3.0 |
5.0 |
g |
NaN |
NaN |
6.0 |
concat函数小结
1)纵向连接,ignore_index = False ,可能生成重复的索引
2)横向连接时,对象索引不能重复
4)合并重叠数据
适用范围:
1)当两个对象的索引有部分或全部重叠时
2)用参数对象中的数据为调用者对象的缺失数据‘打补丁’
a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['a','b','c','d','e','f'])
b = pd.Series(np.arange(len(a)),index = ['a','b','c','d','e','f'])
a
a NaN
b 2.5
c NaN
d 3.5
e 4.5
f NaN
dtype: float64
b
a 0
b 1
c 2
d 3
e 4
f 5
dtype: int32
a.combine_first(b)#利用b填补了a的空值
a 0.0
b 2.5
c 2.0
d 3.5
e 4.5
f 5.0
dtype: float64
a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['g','b','c','d','e','f'])
a.combine_first(b)#部分索引重叠
a 0.0
b 2.5
c 2.0
d 3.5
e 4.5
f 5.0
g NaN
dtype: float64
小结
本篇博客主要讲述了一下内容:
1) merge函数合并数据集
2)concat函数合并数据集
3)combine_first函数,含有重叠索引的缺失值填补