excel计算二元线性回归_实例分析,如何用最小二乘法做线性回归?

最小二乘法是一种通过数值对曲线函数拟合的一种统计学方法,这里的最小是拟合误差达到最小。我们可以根据拟合后的函数可以做一些预测或预报。它在数字信号处理、机器学习等领域广泛的应用。本文W君将和大家一起学习如何通过最小二乘法进行线性回归。

我们来用一个最简单的一元线性回归模型的例子来理解最小二乘法。在生活中,我们知道人的身高和脚的大小是成正比的,这里我们假设身高和脚的大小是成一元线性关系的。那么我们怎么去建立这样一个一元线性模型呢?我们从人群中随机抽取几个身高不同的人,分别测量他们的身高和脚长,假如下面的表格就是我们的统计数据。

excel计算二元线性回归_实例分析,如何用最小二乘法做线性回归?_第1张图片

将他们在坐标系上显示,如下图,可以看到这些数据是趋近于一条直线的。

excel计算二元线性回归_实例分析,如何用最小二乘法做线性回归?_第2张图片

那么如何拟合这个直线呢?早在1805年勒让德就提出了最小二乘法。其方法就是根据已知的m个样本特征值,列出一个目标函数E,并求其最优解,从而使得实际值与预估值达到最小。这里的目标函数也叫损失函数,它是可以表征回归模型中估测值和真实值的不一致程度,其值越小越接近真实情况。它是由若干个预测值和真实之差的平方和构成,所以我们称之为最小二乘。<

你可能感兴趣的:(excel计算二元线性回归,数学建模最小二乘法拟合,最小二乘法建模例题)