数据结构上机实验——二叉树的实现、二叉树遍历、求二叉树的深度/节点数目/叶节点数目、计算二叉树度为1或2的节点数、判断二叉树是否相似

文章目录

  • 数据结构上机实验
    • 1.要求
    • 2.二叉树的实现
      • 2.1创建一颗二叉树
      • 2.2对这棵二叉树进行遍历
      • 2.3求二叉树的深度/节点数目/叶节点数目
      • 2.4计算二叉树中度为 1 或 2 的结点数
      • 2.5判断2棵二叉树是否相似,若相似返回1,否则返回0
    • 3.全部源码
      • 测试:
      • BinaryTree.h
      • test.cpp

数据结构上机实验

1.要求

   建立一棵二叉树,试编程实现二叉树的如下基本操作。
   1.创建一棵一棵二叉算法。
   2.对这棵二叉树进行遍历:先序或中序或后序,分别输出结点的遍历序列。
   3.求二叉树的深度/节点数目/叶节点数目。(选做一个)
   4.计算二叉树中度为1 的结点数;
   5.计算二叉树中度为2 的结点数。
   6.判断2棵二叉树是否相似,若相似返回1,否则返回0

            

2.二叉树的实现

  二叉树的介绍
数据结构上机实验——二叉树的实现、二叉树遍历、求二叉树的深度/节点数目/叶节点数目、计算二叉树度为1或2的节点数、判断二叉树是否相似_第1张图片
  

2.1创建一颗二叉树

  我们现在可以简单实现一个二叉树的结构,其中包括一个二叉树节点(BNode)和一个二叉树(BTree)类。

  我们定义了一个名为BNode的结构体,它代表二叉树的节点。每个节点包含一个数据元素(data,其类型为int)和两个指向其左右子节点的指针(left和right)。

  然后定义了一个名为BTree的类,它包含一个私有成员变量_root,这是一个指向BNode的指针。这个指针表示了树的根节点。这个类还包含一个默认的构造函数,该构造函数将_root初始化为nullptr,即没有初始的根节点。

#define BTDataType int

//定义二叉树节点
typedef struct BTreeNode
{
	BTDataType data;
	struct BTreeNode* left;
	struct BTreeNode* right;
}BNode;

//定义二叉树
class BTree
{
public:
	//构造函数
	BTree()
	{
		_root = nullptr;
	}
	
private:
	BNode* _root;
};

  
输入字符递归创建二叉树:
  我们先使用引用接受一个 BNode*类型的参数 root。这样我们就可以在函数内部,直接对 root 进行操作,最后返回给tmp,再赋给_root。

  这个函数首先从标准输入读取一个字符 val。如果 val 是 . ,则 root 被设置为 nullptr,表示该节点为空。如果 val 不是 .,则创建一个新的 BNode 对象,其 data 成员的值为 val 减去字符 ‘0’ 的 ASCII 值(这样可以获得一个整数),然后递归地创建这个新节点的左子树和右子树。最后,_BTCreate 返回,控制权回到调用该函数的代码。

//递归创建二叉树
void _BTCreate(BNode*& root)
{
	char val;
	cin >> val;
	if (val == '.') root = nullptr;
	else
	{
		root = new BNode(val - '0');
		_BTCreate(root->left);
		_BTCreate(root->right);
	}
}

//递归创建二叉树
void BTCreate()
{
	BNode* tmp;
	_BTCreate(tmp);
	_root = tmp;
}

  

2.2对这棵二叉树进行遍历

数据结构上机实验——二叉树的实现、二叉树遍历、求二叉树的深度/节点数目/叶节点数目、计算二叉树度为1或2的节点数、判断二叉树是否相似_第2张图片

前序遍历:

  我们创建_PreOrder(BNode* root)这个函数是用来前序遍历。它的顺序是:先访问根节点,然后访问左子树,最后访问右子树。

  如果 root 是 nullptr(即当前节点为空),它将输出 “NULL” 并返回。如果 root 非空,它会输出当前节点的数据(root->data),然后递归地对左子树和右子树进行前序遍历。

  由于二叉树的前序遍历是一个递归算法,为了可以将根节点不断的更新,并且递归。 我们需要封装一下,对于后面需要递归的函数,我们都需要将根节点作为参数,进行递归操作。

//前序遍历
void _PreOrder(BNode* root)
{
	if (root == nullptr)
	{
		cout << "NULL" << " ";
		return;
	}

	cout << root->data << " ";
	_PreOrder(root->left);
	_PreOrder(root->right);
}

//前序遍历
void PreOrder()
{
	_PreOrder(_root);
	cout << endl;
}

  
中序遍历:

  我们创建 _InOrder(BNode* root) 来进行中序遍历,它的顺序是:先访问左子树,然后访问根节点,最后访问右子树。

  如果 root 是 nullptr,表示当前节点为空,输出 “NULL” 并返回。如果 root 非空,先递归地遍历左子树,然后输出当前节点的数据 root->data,最后递归地遍历右子树。

//中序遍历
void _InOrder(BNode* root)
{
	if (root == nullptr)
	{
		cout << "NULL" << " ";
		return;
	}

	_InOrder(root->left);
	cout << root->data << " ";
	_InOrder(root->right);
}

//中序遍历
void InOrder()
{
	_InOrder(_root);
	cout << endl;
}

  
后序遍历:

  我们创建 _PostOrder(BNode* root) 函数来进行进行后序遍历,它的顺序是:先访问左子树,然后访问右子树,最后访问根节点。

  如果 root 是 nullptr,表示当前节点为空,输出 “NULL” 并返回。如果 root 非空,先递归地遍历左子树,然后递归地遍历右子树,最后输出当前节点的数据 root->data。

//后序遍历
void _PostOrder(BNode* root)
{
	if (root == nullptr)
	{
		cout << "NULL" << " ";
		return;
	}

	_PostOrder(root->left);
	_PostOrder(root->right);
	cout << root->data << " ";
}

//后序遍历
void PostOrder()
{
	_PostOrder(_root);
	cout<<endl;
}

  

2.3求二叉树的深度/节点数目/叶节点数目

计算二叉树深度:

  我们使用递归的方式来实现计算二叉树的深度。二叉树的深度可以定义为左子树和右子树深度的最大值加1。

  函数接受的参数root 是 NULL,即当前节点为空,那么返回深度为0。否则,递归地计算左子树和右子树的深度,并返回其中较大的一个,并加上1(当前节点的深度)。

//计算二叉树深度
int _BTDepth(BNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	else
	{
		int left_Height = _BTDepth(root->left) + 1;
		int right_Height = _BTDepth(root->right) + 1;
		if (left_Height >= right_Height) return left_Height;
		else return right_Height;
	}
}

//计算二叉树深度
int	BTDepth()
{
	return _BTDepth(_root);
}

  
计算二叉树节点数目:

  我们递归实现_Num_Of_TreeNode来计算二叉树的节点数目。

  首先我们接收一个指向二叉树节点的指针 root 作为参数。如果 root 是 NULL(也就是说,当前节点不存在),函数返回0。否则,则说明该二叉树的节点存在,函数返回1(对于当前节点) 加上左子树和右子树的节点数目。这是通过递归调用 _Num_Of_TreeNode 函数得到的。

//计算二叉树节点数目
int _Num_Of_TreeNode(BNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	else
	{
		return 1 + _Num_Of_TreeNode(root->left) + 
		_Num_Of_TreeNode(root->right);
	}
}

//计算二叉树节点数目
int Num_Of_TreeNode()
{
	return _Num_Of_TreeNode(_root);
}

  
计算二叉树叶子节点的数目:

  我们同样创建递归函数 _Num_Of_LeafNode来计算二叉树的叶子节点。

  我们接收一个指向二叉树节点的指针 root 作为参数。如果 root 是 NULL(也就是说,当前节点不存在),函数返回0。否则,函数首先递归地计算左子树和右子树的叶子节点数量,分别存储在 left_Num 和 right_Num 中。

  注意:如果 left_Num 和 right_Num 的和为0,这意味着当前节点是叶子节点,因此返回1。 如果 left_Num 和 right_Num 的和不为0,这意味着当前节点不是叶子节点,因此返回 left_Num 和 right_Num 的和。

//计算二叉树叶子节点的数目
int _Num_Of_LeafNode(BNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	else
	{
		int left_Num = _Num_Of_LeafNode(root->left);
		int right_Num = _Num_Of_LeafNode(root->right);
		if (left_Num + right_Num == 0)
		{
			return 1;
		}
		else
		{
			return left_Num + right_Num;
		}
	}
}

//计算二叉树叶子节点的数目
int Num_Of_LeafNode()
{
	return _Num_Of_LeafNode(_root);
}

  

2.4计算二叉树中度为 1 或 2 的结点数

  
计算度为1的节点个数:

  二叉树的递归函数大差不差,我们对于求不同的节点,只要加以它们的性质判断即可。

  如果二叉树的节点度为2,说明它们均有左右节点。 所以,此时函数返回的是左子树和右子树中1度节点的总和。

  只有右节点: 如果一个节点只有右子节点,那么它是1度节点。 因此,这个分支计算了右子树中的1度节点数量,并加上1(表示当前节点)。

  只有左节点: 与上述逻辑类似,如果一个节点只有左子节点, 那么它也是1度节点。这个分支计算了左子树中的1度节点数量,并加上1(表示当前节点)。

  无左右节点: 如果一个节点既没有左子节点也没有右子节点,那么它不是1度节点。函数返回0。

//计算度为1的节点个数
int _Num_Of_Degree_1(BNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->left == NULL && root->right != NULL 
	|| root->left != NULL && root->right == NULL)
	{
		return 1 + _Num_Of_Degree_1(root->left) + 
		_Num_Of_Degree_1(root->right);
	}
	return  _Num_Of_Degree_1(root->left) + 
	_Num_Of_Degree_1(root->right);
}

//计算二叉树节点数目
int Num_Of_TreeNode()
{
	return _Num_Of_TreeNode(_root);
}

  
计算度为2的节点个数:

  和上面一样,我们实现计算一个二叉树中度为2的节点的数量。度为2的节点是指有两个子节点的节点。

  如果 root 的左右子节点都不为空(root->left != NULL and root->right != NULL),则说明当前节点的度为2,返回1(对于当前节点)加上左子树和右子树的度为1的节点数量之和。

  只有右子节点不为空,则只返回右子树的度为1的节点数量。

  只有左子节点不为空,则只返回左子树的度为1的节点数量。

  左右子节点都为空,则当前节点不是度为2的节点,返回0。

//计算度为2的节点个数
int _Num_Of_Degree_2(BNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	else if(root->left != NULL && root->right != NULL)//均有左右节点
	{
		return 1 + _Num_Of_Degree_2(root->left) 
		+ _Num_Of_Degree_2(root->right);
	}
	return _Num_Of_Degree_2(root->right)+ _Num_Of_Degree_2(root->left);
}

//计算度为2的节点个数
int Num_Of_Degree_2()
{
	return _Num_Of_Degree_2(_root);
}

  

2.5判断2棵二叉树是否相似,若相似返回1,否则返回0

  这个函数是用来判断两棵二叉树是否相似的。相似二叉树的定义是:如果两棵二叉树的结构相同,即它们的左子树和右子树都是相似的,那么这两棵二叉树就是相似的。

  这个函数使用递归的方式进行检查。首先,如果两个节点都为空,那么它们显然是相似的。然后,如果两个节点都不为空,并且它们的左子树和右子树都是相似的,那么这两个节点也是相似的。 最后,如果以上条件都不满足,那么这两个节点就不相似。

//判断二叉树是否相似
int Is_Similar(BNode* t1, BNode* t2)
{
	if (t1 == NULL && t2 == NULL)
	{
		return 1;
	}
	else if (t1 && t2 && Is_Similar(t1->left, t2->left)
	 && Is_Similar(t1->right, t2->right))
	{
		return 1;
	}
	else
	{
		return 0;
	}
}

            

3.全部源码

测试:

数据结构上机实验——二叉树的实现、二叉树遍历、求二叉树的深度/节点数目/叶节点数目、计算二叉树度为1或2的节点数、判断二叉树是否相似_第3张图片
数据结构上机实验——二叉树的实现、二叉树遍历、求二叉树的深度/节点数目/叶节点数目、计算二叉树度为1或2的节点数、判断二叉树是否相似_第4张图片
  

数据结构上机实验——二叉树的实现、二叉树遍历、求二叉树的深度/节点数目/叶节点数目、计算二叉树度为1或2的节点数、判断二叉树是否相似_第5张图片
数据结构上机实验——二叉树的实现、二叉树遍历、求二叉树的深度/节点数目/叶节点数目、计算二叉树度为1或2的节点数、判断二叉树是否相似_第6张图片

BinaryTree.h

#pragma once

#define BTDataType int

//定义二叉树节点
typedef struct BTreeNode
{
	BTDataType data;
	struct BTreeNode* left;
	struct BTreeNode* right;

	BTreeNode() 
	{
		data = -1;
		left = nullptr;
		right = nullptr;
	}

	BTreeNode(const int& _data)
	{
		data = _data;
		left = nullptr;
		right = nullptr;
	}
}BNode;

//定义二叉树
class BTree
{
public:
	//构造函数
	BTree()
	{
		_root = nullptr;

	}

	//析构函数
	~BTree()
	{
		DestroyTree(_root);
	}

	//递归创建二叉树
	void BTCreate()
	{
		BNode* tmp;
		_BTCreate(tmp);
		_root = tmp;
	}

	//前序遍历
	void PreOrder()
	{
		_PreOrder(_root);
		cout << endl;
	}

	//中序遍历
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	//后序遍历
	void PostOrder()
	{
		_PostOrder(_root);
		cout<<endl;
	}

	//计算二叉树深度
	int	BTDepth()
	{
		return _BTDepth(_root);
	}

	//计算二叉树节点数目
	int Num_Of_TreeNode()
	{
		return _Num_Of_TreeNode(_root);
	}

	//计算二叉树叶子节点的数目
	int Num_Of_LeafNode()
	{
		return _Num_Of_LeafNode(_root);
	}

	//计算度为1的节点个数
	int Num_Of_Degree_1()
	{
		return _Num_Of_Degree_1(_root);
	}

	//计算度为2的节点个数
	int Num_Of_Degree_2()
	{
		return _Num_Of_Degree_2(_root);
	}

	//判断二叉树是否相似
	int Is_Similar(BNode* t1, BNode* t2)
	{
		if (t1 == NULL && t2 == NULL)
		{
			return 1;
		}
		else if (t1 && t2 && Is_Similar(t1->left, t2->left) && Is_Similar(t1->right, t2->right))
		{
			return 1;
		}
		else
		{
			return 0;
		}
	}

	//取根节点
	BNode*& GetRoot()
	{
		return _root;
	}

private:
	//递归创建二叉树
	void _BTCreate(BNode*& root)
	{
		char val;
		cin >> val;
		if (val == '.') root = nullptr;
		else
		{
			root = new BNode(val - '0');
			_BTCreate(root->left);
			_BTCreate(root->right);
		}
	}

	//前序遍历
	void _PreOrder(BNode* root)
	{
		if (root == nullptr)
		{
			cout << "NULL" << " ";
			return;
		}
	
		cout << root->data << " ";
		_PreOrder(root->left);
		_PreOrder(root->right);
	}

	//中序遍历
	void _InOrder(BNode* root)
	{
		if (root == nullptr)
		{
			cout << "NULL" << " ";
			return;
		}

		_InOrder(root->left);
		cout << root->data << " ";
		_InOrder(root->right);
	}

	//后序遍历
	void _PostOrder(BNode* root)
	{
		if (root == nullptr)
		{
			cout << "NULL" << " ";
			return;
		}

		_PostOrder(root->left);
		_PostOrder(root->right);
		cout << root->data << " ";
	}

	//计算二叉树深度
	int _BTDepth(BNode* root)
	{
		if (root == NULL)
		{
			return 0;
		}
		else
		{
			int left_Height = _BTDepth(root->left) + 1;
			int right_Height = _BTDepth(root->right) + 1;
			if (left_Height >= right_Height) return left_Height;
			else return right_Height;
		}
	}

	//计算二叉树节点数目
	int _Num_Of_TreeNode(BNode* root)
	{
		if (root == NULL)
		{
			return 0;
		}
		else
		{
			return 1 + _Num_Of_TreeNode(root->left) + _Num_Of_TreeNode(root->right);
		}
	}

	//计算二叉树叶子节点的数目
	int _Num_Of_LeafNode(BNode* root)
	{
		if (root == NULL)
		{
			return 0;
		}
		else
		{
			int left_Num = _Num_Of_LeafNode(root->left);
			int right_Num = _Num_Of_LeafNode(root->right);
			if (left_Num + right_Num == 0)
			{
				return 1;
			}
			else
			{
				return left_Num + right_Num;
			}
		}
	}

	//计算度为1的节点个数
	int _Num_Of_Degree_1(BNode* root)
	{
		if (root == NULL)
		{
			return 0;
		}
		if (root->left == NULL && root->right != NULL || root->left != NULL && root->right == NULL)
		{
			return 1 + _Num_Of_Degree_1(root->left) + _Num_Of_Degree_1(root->right);
		}
		return  _Num_Of_Degree_1(root->left) + _Num_Of_Degree_1(root->right);
	}

	//计算度为2的节点个数
	int _Num_Of_Degree_2(BNode* root)
	{
		if (root == NULL)
		{
			return 0;
		}
		else if(root->left != NULL && root->right != NULL)//均有左右节点
		{
			return 1 + _Num_Of_Degree_2(root->left) + _Num_Of_Degree_2(root->right);
		}
		return  _Num_Of_Degree_2(root->left) + _Num_Of_Degree_2(root->right);
	}

	//销毁二叉树
	void DestroyTree(BNode*& root) 
	{
		if (root == NULL) 
		{
			return;
		}

		BNode* lroot = root->left;
		BNode* rroot = root->right;
		delete root;
		if (lroot != NULL)
		{
			DestroyTree(lroot);
		}
		if (rroot != NULL)
		{
			DestroyTree(rroot);
		}
	}

private:
	BNode* _root;
};

            

test.cpp

#define _CRT_SECURE_NO_WARNINGS 1

#include
using namespace std;
 
#include"BinaryTree.h" 

void binary_Test()
{
	BTree bt1;
	BTree bt2;
	cout << "输入第一棵树的前序遍历(空树请用 . 代替):";
	bt1.BTCreate();
	cout << "输入第二棵树的前序遍历(空树请用 . 代替):";
	bt2.BTCreate(); 
	cout << "第一棵树的前序遍历为:";
	bt1.PreOrder();
	cout << "第一棵树的中序遍历为:"; 
	bt1.InOrder();	
	cout << "第一棵树的后序遍历为:"; 
	bt1.PostOrder();
	cout << "第一棵树的深度为:" << bt1.BTDepth() << endl;
	cout << "第一棵树中的节点数:" << bt1.Num_Of_TreeNode() << endl;
	cout << "第一棵树中的叶子节点数:" << bt1.Num_Of_LeafNode() << endl;
	cout << "第一棵树中度为1的节点数:" << bt1.Num_Of_Degree_1() << endl;
	cout << "第一棵树中度为2的节点数:" << bt1.Num_Of_Degree_2() << endl;
	cout << endl;
	cout << "第二棵树的前序遍历为:";
	bt2.PreOrder();
	cout << "第二棵树的中序遍历为:";
	bt2.InOrder();
	cout << "第二棵树的后序遍历为:";
	bt2.PostOrder();
	cout << "第二棵树的深度为:" << bt2.BTDepth() << endl;
	cout << "第二棵树中的节点数:" << bt2.Num_Of_TreeNode() << endl;
	cout << "第二棵树中的叶子节点数:" << bt2.Num_Of_LeafNode() << endl;
	cout << "第二棵树中度为1的节点数:" << bt2.Num_Of_Degree_1() << endl;
	cout << "第二棵树中度为2的节点数:" << bt2.Num_Of_Degree_2() << endl;
	cout << "两棵树是否相似:" << bt1.Is_Similar(bt1.GetRoot(), bt2.GetRoot());
}

int main()
{
	binary_Test();
	return 0;
}

你可能感兴趣的:(数据结构,数据结构)