进化论推论-复杂系统进化演变理论

1. 摘要

Physical laws—such as the laws of motion, gravity, electromagnetism, and thermodynamics—codify the general behavior of varied macroscopic natural systems across space and time. We propose that an additional, hitherto-unarticulated law is required to characterize familiar macroscopic phenomena of our complex, evolving universe. An important feature of the classical laws of physics is the conceptual equivalence of specific characteristics shared by an extensive, seemingly diverse body of natural phenomena. Identifying potential equivalencies among disparate phenomena—for example, falling apples and orbiting moons or hot objects and compressed springs—has been instrumental in advancing the scientific understanding of our world through the articulation of laws of nature. A pervasive wonder of the natural world is the evolution of varied systems, including stars, minerals, atmospheres, and life. These evolving systems appear to be conceptually equivalent in that they display three notable attributes: 1) They form from numerous components that have the potential to adopt combinatorially vast numbers of different configurations; 2) processes exist that generate numerous different configurations; and 3) configurations are preferentially selected based on function. We identify universal concepts of selection—static persistence, dynamic persistence, and novelty generation—that underpin function and drive systems to evolve through the exchange of information between the environment and the system. Accordingly, we propose a “law of increasing functional information”: The functional information of a system will increase (i.e., the system will evolve) if many different configurations of the system undergo selection for one or more functions.

物理定律——如运动定律、重力定律、电磁定律和热力学定律——编纂了跨越空间和时间的各种宏观自然系统的一般行为。我们提出,需要一个额外的,迄今为止尚未阐明的定律来描述我们复杂的,不断发展的宇宙中熟悉的宏观现象。经典物理定律的一个重要特征是广泛的、看似多样的自然现象所共有的特定特征在概念上是等价的。确定不同现象之间的潜在等效性——例如,掉落的苹果和绕轨道运行的卫星或热物体和压缩的弹簧——有助于通过阐明自然法则来推进对我们世界的科学理解。自然界的一个普遍奇迹是各种系统的进化,包括恒星、矿物、大气和生命。这些进化中的系统似乎在概念上是等价的,因为它们显示出三个显著的属性:1)它们由许多组件形成,这些组件有可能组合采用大量不同的配置;2)存在产生许多不同配置的过程;以及3)基于功能优先选择配置。我们确定了选择的普遍概念——静态持久性、动态持久性和新颖性产生——它们通过环境和系统之间的信息交换来支撑功能并驱动系统进化。因此,我们提出了一个“功能信息增长定律”:如果系统的许多不同配置经历一个或多个功能的选择,系统的功能信息将增加(即,系统将进化)。

个人理解: 这篇文章在试图找到一种适合于万物进化发展过程的算法,来说明系统的演化、进化过程。并且提出了“功能信息增长定律”。文章认为:如果系统的许多不同配置经历了一个或者多个功能的选择,系统的功能信息就会增加,也就产生了进化。

参考文献资料

PNAS 文章- On the roles of function and selection in evolving systems

你可能感兴趣的:(机器学习,人工智能)