2021SC@SDUSC
本周分析
#tools/infer.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
sys.path.append(parent_path)
# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import glob
import numpy as np
from PIL import Image
import paddle
from paddle.distributed import ParallelEnv
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.visualizer import visualize_results
from ppdet.utils.cli import ArgsParser
from ppdet.utils.checkpoint import load_weight
from ppdet.utils.eval_utils import get_infer_results
from ppdet.utils.logger import setup_logger
logger = setup_logger('train')
#运行配置参数解析函数
def parse_args():
parser = ArgsParser()
parser.add_argument(
"--infer_dir",
type=str,
default=None,
help="Directory for images to perform inference on.")
parser.add_argument(
"--infer_img",
type=str,
default=None,
help="Image path, has higher priority over --infer_dir")
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Directory for storing the output visualization files.")
parser.add_argument(
"--draw_threshold",
type=float,
default=0.5,
help="Threshold to reserve the result for visualization.")
parser.add_argument(
"--slim_config",
default=None,
type=str,
help="Configuration file of slim method.")
parser.add_argument(
"--use_vdl",
type=bool,
default=False,
help="Whether to record the data to VisualDL.")
parser.add_argument(
'--vdl_log_dir',
type=str,
default="vdl_log_dir/image",
help='VisualDL logging directory for image.')
parser.add_argument(
"--save_txt",
type=bool,
default=False,
help="Whether to save inference result in txt.")
args = parser.parse_args()
return args
# 获取测试图片函数
def get_test_images(infer_dir, infer_img):
"""
Get image path list in TEST mode
"""
assert infer_img is not None or infer_dir is not None, \
"--infer_img or --infer_dir should be set"
assert infer_img is None or os.path.isfile(infer_img), \
"{} is not a file".format(infer_img)
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
# infer_img has a higher priority
if infer_img and os.path.isfile(infer_img):
return [infer_img]
images = set()
infer_dir = os.path.abspath(infer_dir)
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
assert len(images) > 0, "no image found in {}".format(infer_dir)
logger.info("Found {} inference images in total.".format(len(images)))
return images
#run函数,detection套件执行的核心部分
def run(FLAGS, cfg):
# build trainer *******************注册模型,最最核心部分**********************
trainer = Trainer(cfg, mode='test')
# load weights #加载模型权重
trainer.load_weights(cfg.weights)
# get inference images #获取推理数据
images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
# inference #执行推理,(图片数据、阈值、结果保存目录、文本保存)
trainer.predict(
images,
draw_threshold=FLAGS.draw_threshold,
output_dir=FLAGS.output_dir,
save_txt=FLAGS.save_txt)
#主函数定义
def main():
FLAGS = parse_args() #加载运行参数
cfg = load_config(FLAGS.config) #加载yaml配置
cfg['use_vdl'] = FLAGS.use_vdl #是否启动可视化
cfg['vdl_log_dir'] = FLAGS.vdl_log_dir #可视化文件目录
merge_config(FLAGS.opt) #合并配置
#执行环境配置
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
# 是否采用同步BN
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn' and not cfg.use_gpu:
cfg['norm_type'] = 'bn'
#slim_config配置
if FLAGS.slim_config:
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')
#检查配置文件是否正确
check_config(cfg)
check_gpu(cfg.use_gpu)
check_version()
#执行run函数
run(FLAGS, cfg)
#程序入口
if __name__ == '__main__':
main()#主函数入口
###########infer.py流程解析###############
从程序入口开始(if name == ‘main’:)
1.直接进入main函数
初始化训练参数:
①.parser = ArgsParser() #读取命令行传递参数,加载yaml文件参数
②.将参数整合在一起,检查参数配置是否正确
③.是否使用GPU加速
④.查看paddledet版本是否正确
⑤.进入run()函数
配置阶段
a.创建网络结构类
b.初始化模型权重,加载预训练模型
c.创建数据读取类
d.选择推理标准
开启推理
e.遍历数据,开启前向推理,收集结果
f.保存推理结果(box or mask)
g.使用VisualDL保存图片结果
直到迭代结束输出结果