43基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构

基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构,分别有,(1)基于L1正则的最小二乘算法-L1_Ls,(2)软阈值迭代算法(ISTA),(3)快速的迭代阈值收缩算法(FISTA),(4)平滑L0范数的重建算法(SL0算法),(5)正交匹配追踪算法(OMP),(6)压缩感知重构算法之压缩采样匹配追踪(CoSaMP)。程序已跑通

哔哩哔哩工房 (bilibili.com)icon-default.png?t=N7T8https://gf.bilibili.com/item/detail/1103716078

43基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构_第1张图片

43基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构_第2张图片

你可能感兴趣的:(matlab工程应用,matlab,重构,算法)