Pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象。一个Pod代表着集群中运行的一个进程。kubernetes中其他大多数组件都是围绕着Pod来进行支撑和扩展Pod功能的,例如,用于管理Pod运行的StatefulSet和Deployment等控制器对象,用于暴露Pod应用的Service和Ingress对象,为Pod提供存储的PersistentVolume存储资源对象等。
在Kubrenetes集群中Pod有如下两种使用方式:
一个Pod中运行一个容器:"每个Pod中一个容器"的模式是最常见的用法;在这种使用方式中,你可以把Pod想象成是单个容器的封装, kutberentes管理的是Pod而不是直接管理容器。
在一个Pod中同时运行多个容器:一个Pod中也可以同时封装几个需要紧密耦合互相协作的容器,它们之间共享资源。这些在同一个Pod中的容器可以互相协作成为一个service单位,比如一个容器共享文件,另一个"sidecar"容器来更新这些文件。Pod将这些容器的存储资源作为一个实体来管理。
一个Pod下的容器必须运行于同一节点上。现代容器技术建议一个容器只运行一个进程,该进程在容器中PTD命令空间中的进程号为1,可直接接收并处理信号,进程终止时容器生命周期也就结束了。若想在容器内运行多个进程,需要有一个类似Linux操作系统init进程的管控类进程,以树状结构完成多进程的生命周期管理。运行于各自容器内的进程无法直接完成网络通信,这是由于容器间的隔离机制导致,k8s中的pod资源抽象正是解决此类问题,Pod对象是一组容器的集合,这些容器共享Network、UTS及IPc命令空间,因此具有相同的域名、主机名和网络接口,并可通过IPC直接通信。
Pod资源中针对各容器提供网络命令空间等共享机制的是底层基础容器
pause
,基础容器〈也可称为父容器)pause
就是为了管理pod容器间的共享操作,这个父容器需要能够准确地知道如何去创建共享运行环境的容器,还能管理这些容器的生命周期。为了实现这个父容器的构想, kubernetes中,用pause
容器来作为一个Pod中所有容器的父容器。这个pause
容器有两个核心的功能,一是它提供整个Pod的Linux命名空间的基础。二来启用PID命名空间,它在每个Pod中都作为PID为1进程(init进程),并回收僵尸进程。
pause容器使得Pod中的所有容器可以共享两种资源:网络和存储
●网络:
每个Pod都会被分配一个唯一的IP地址。Pod中的所有容器共享网络空间,包括TP地址和端口。Pod内部的容器可以使用localhost互相通信。Pod中的容器与外界通信时,必须分配共享网络资源(例如使用宿主机的端口映射)。
●存储:
可以Pod指定多个共享的Volume。Pod中的所有容器都可以访问共享的Volume。Volume也可以用来持久化Pod中的存储资源,以防容器重启后文件丢失。
kubernetes中的pause容器主要为每个业务容器提供以下功能:
●在pod中担任Linux命名空间(如网络命令空间)共享的基础;
●启用PID命名空间,开启init进程。
Kubernetes设计这样的Pod概念和特殊组成结构的作用有以下两点:
原因一:在一组容器作为一个单元的情况下,难以对整体的容器简单地进行判断及有效地进行行动。比如,一个容器死亡了,此时是算整体挂了么?那么引入与业务无关的Pause容器作为Pod的根容器,以它的状态代表着整个容器组的状态,这样就可以解决该问题。
原因二:Pod里的多个业务容器共享Pause容器的IP,共享Pause容器挂载的volume,这样简化了业务容器之间的通信问题,也解决了容器之间的文件共享问题。
通常把Pod分为两类:自主式Pod和控制器管理的Pod
●自主式Pod
这种Pod本身是不能自我修复的,当Pod被创建后(不论是由你直接创建还是被其他controller),都会被Kuberentes调度到集群的Node 上。直到pod的进程终止、被删掉、因为缺少资源而被驱逐、或者Node故障之前这个Pod都会一直保持在那个Node上。Pod不会自愈。如果Pod运行的Node故障,或者是调度器本身故障,这个Pod就会被删除。同样的,如果Pod所在Node缺少资源或者Pod处于维护状态,Pod也会被驱逐。
●控制器管理的Pod
Kubernetes使用更高级的称为Controller的抽象层,来管理Pod实例。Controller可以创建和管理多个Pod,提供副本管理、滚动升级和集群级别的自愈能力。例如,如果一个Node故障,Controller就能自动将该节点上的Pod调度到其他健康的Node 上。虽然可以直接使用Pod,但是在Kubernetes中通常是使用Controller来管理Pod的。
每个Pod都有一个特殊的被称为"根容器"的Pause容器。Pause容器对应的镜像属于Kubernetes平台的一部分,除了Pause容器,每个Pod还包含一个或者多个紧密相关的用户业务容器。
维护整个Pod网络和存储空间
//node节点中操作
//启动一个容器时,k8s会自动启动一个基础容器cat /opt/kubernetes/cfg/kubelet
......
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google-containers/pause-amd64:3.0"
//每次创建Pod时候就会创建,运行的每一个容器都有一个pause-amd64的基础容器自动会运行,对于用户是透明的docker ps -a
registry.cn-hangzhou.aliyuncs.com/google-containers/pause-amd64:3.0 "/pause"
Init容器必须在应用程序容器启动之前运行完成,而应用程序容器是并行运行的,所以Tnit容器能够提供了一种简单的阻塞或延迟应用容器的启动的方法。
Init容器与普通的容器非常像,除了以下两点:
Init容器总是运行到成功完成为止
●每个Init容器都必须在下一个Init容器启动之前成功完成
●如果Pod的 Init容器失败,k8s会不断地重启该Pod,直到 Init容器成功为止。然而,如果 Pod对应的重启策略(restartPolicy)为Never,它不会重新启动。
因为Init容器具有与应用容器分离的单独镜像,其启动相关代码具有如下优势:
init容器可以包含一些安装过程中应用容器中不存在的实用工具或个性化代码。例如,没有必要仅为了在安装过程中使用类似sed,awk,python或 dig这样的工具而去FROM一个镜像来生成一个新的镜像。
●Init容器可以安全地运行这些工具,避免这些工具导致应用镜像的安全性降低。
●应用镜像的创建者和部署者可以各白独立工作,而没有必要联合构建一个单独的应用镜像。
●Init容器能以不同于Pod内应用容器的文件系统视图运行。因此,Init容器可具有访问Secrets的权限,而应用容器不能够访问。
●由于Init 容器必须在应用容器启动之前运行完成,因此Init容器提供了一种机制来阻塞或延迟应用容器的启动,直到满足了一组先决条件。一旦前置条件满足,Pod内的所有的应用容器会并行启动。
下面的例子定义了一个具有 2 个 Init 容器的简单 Pod。 第一个等待 myservice 启动, 第二个等待 mydb 启动。 一旦这两个 Init容器 都启动完成,Pod 将启动 spec 节中的应用容器。
vim myapp.yaml
apiVersion: v1
kind: Pod
metadata:
name: myapp-pod
labels:
app: myapp
spec:
containers:
- name: myapp-container
image: busybox:1.28
command: ['sh', '-c', 'echo The app is running! && sleep 3600']
initContainers:
- name: init-myservice
image: busybox:1.28
command: ['sh', '-c', "until nslookup myservice; do echo waiting for myservice; sleep 2; done"]
- name: init-mydb
image: busybox:1.28
command: ['sh', '-c', "until nslookup mydb; do echo waiting for mydb; sleep 2; done"]
//启动 Pod:
kubectl apply -f myapp.yaml
//检查其状态:
kubectl get -f myapp.yaml
//查看更多详细信息:
kubectl describe -f myapp.yaml
//查看 Pod 内 Init 容器的日志,请执行:
kubectl logs myapp-pod -c init-myservice # 查看第一个 Init 容器
Init 容器将会等待至发现名称为 mydb 和 myservice 的 Service
创建这些 Service 的配置文件:
vim service.yaml
---
apiVersion: v1
kind: Service
metadata:
name: myservice
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9376
---
apiVersion: v1
kind: Service
metadata:
name: mydb
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9377
创建 mydb 和 myservice 服务的命令:
kubectl create -f services.yaml
//重新检查其状态:
kubectl get -f myapp.yaml
●在 Pod 启动过程中,每个 Init 容器会在网络和数据卷初始化之后按顺序启动。 kubelet 运行依据 Init 容器在 Pod 规约中的出现顺序依次运行之。
●每个 Init 容器成功退出后才会启动下一个 Init 容器。 如果某容器因为容器运行时的原因无法启动,或以错误状态退出,kubelet 会根据 Pod 的 restartPolicy 策略进行重试。 然而,如果 Pod 的 restartPolicy 设置为 “Always”,Init 容器失败时会使用 restartPolicy 的 “OnFailure” 策略。
●在所有的 Init 容器没有成功之前,Pod 将不会变成 Ready 状态。 Init 容器的端口将不会在 Service 中进行聚集。正在初始化中的 Pod 处于 Pending 状态, 但会将状况 Initializing 设置为 false。
●如果 Pod 重启,所有 Init 容器必须重新执行。
●对 Init 容器规约的修改仅限于容器的 image 字段。 更改 Init 容器的 image 字段,等同于重启该 Pod。
●因为 Init 容器可能会被重启、重试或者重新执行,所以 Init 容器的代码应该是幂等的。 特别地,基于 emptyDirs 写文件的代码,应该对输出文件可能已经存在做好准备。
●Init 容器具有应用容器的所有字段。然而 Kubernetes 禁止使用 readinessProbe, 因为 Init 容器不能定义不同于完成态(Completion)的就绪态(Readiness)。 Kubernetes 会在校验时强制执行此检查。
●在 Pod 上使用 activeDeadlineSeconds 和在容器上使用 livenessProbe 可以避免 Init 容器一直重复失败。activeDeadlineSeconds 时间包含了 Init 容器启动的时间。
●在 Pod 中的每个应用容器和 Init 容器的名称必须唯一; 与任何其它容器共享同一个名称,会在校验时抛出错误。
并行启动
官网示例:
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
Pod 的核心是运行容器,必须指定容器引擎,比如Docker, 启动容器时,需要拉取镜像,k8s 的镜像拉取策略可以由用户指定:
①IfNotPresent:在镜像已经存在的情况下,kubelet将不再去拉取镜像,仅当本地缺失时才从仓库中拉取,默认的镜像拉取策略
②Always: 每次创建Pod 都会重新拉取一 次镜像;
③Never:Pod不会主动拉取这个镜像,仅使用本地镜像。
注意:对于标签为“:latest"的镜像文件,其默认的镜像获取策略即为"Always";
而对于其他标签的镜像,其默认策略则为“IfNotPresent"
当定义Pod 时可以选择性地为每个容器设定所需要的资源数量。最常见的可设定资源是CPU和内存大小,以及其他类型的资源。
当为 Pod 中的容器指定了request资源时,调度器就使用该信息来决定将Pod调度到哪个节点上。当还为容器指定了limit资源时,kubelet就会确保运行的容器不会使用超出所设的limit资源量。kubelet还会为容器预留所设的 request 资源量,供该容器使用。
如果 Pod运行所在的节点具有足够的可用资源,容器且可以使用超出所设置的 request资源量。不过,容器不可以使用超出所设置的limit资源量。
如果给容器设置了内存的 limit值,但未设置内存的 request值,Kubernetes 会自动为其设置与内存 limit相匹配的 request值。类似的,如果给容器设置了CPU的 limit值但未设置cPU的 request值,则Kubernetes自动为其设置CPU 的request 值并使之与CPU 的limit 值匹配。
官网示例:
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
spec .containers[].resources.requests.cpu //定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory //定义创建容器时预分配的内存资源
spec.containers[].resources.imits.cpu //定义cpu 的资源上限
spec.containers[].resources.1imits.memory //定义内存的资源上限
CPU资源的request和limit以cpu为单位。Kubernetes 中的一个cpu相当于1个VCPU (1个超线程)
Kubernetes也支持带小数CPU 的请求。spec.containers[].resources.requests.cpu为0.5 的容器能够获得一个cpu的一半CPU资源(类似于Cgroup对CPU资源的时间分片)。表达式0.1 等价于表达式100m (毫核),表示每1000 毫秒内容器可以使用的CPU时间总量为0.1*1000 亳秒。
Pod在遇到故障之后重启的动作
①Always:当容器终止退出后,总是重启容器,默认策略
②OnFailure: 当容器异常退出(退出状态码非0)时,重启容器;正常退出则不重启容器
③Never:当容器终止退出,从不重启容器。
#注意: K8S中不支持重启Pod资源,只有删除重建
探针是由kubelet对容器执行的定期诊断。
●livenessProbe :判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。如果容器不提供存活探针,则默认状态为Success。
●readinessProbe :判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service endpoints 中剔除删除该Pod的IP地址。初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。
●startupProbe(这个1.17版本增加的):判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
#注:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。
●exec :在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。
●tcpSocket :对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。
●==httpGet ==:对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的
每次探测都将获得以下三种结果之一
●成功:容器通过了诊断。
●失败:容器未通过诊断。
●未知:诊断失败,因此不会采取任何行动
官网示例:
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/