概述
大规模数据如何检索
当系统数据量上了10亿、100亿条的时候,我们在做系统架构的时候通常会从以下角度去考虑问题:
- 用什么数据库好?(mysql、sybase、oracle、达梦、神通、mongodb、hbase…)
- 如何解决单独故障?(lvs、F5、A10、Zookeep、MQ)
- 如何保证数据安全性?(热备、冷备、异地多活)
- 如何解决检索难题?(数据库代理中间件:mysql-proxy、Cobar、MaxScale等;)
- 如何解决统计分析问题?(离线、近实时)
传统数据库的解决方案
对于关系型数据,我们通常采用以下或类似架构去解决查询瓶颈和写入瓶颈:
解决要点:
1)通过主从备份解决数据安全性问题;
2)通过数据库代理中间件心跳监测,解决单点故障问题;
3)通过代理中间件将查询语句分发到各个slave节点进行查询,并汇总结果。
非关系型数据库的解决方案
对于Nosql数据库,以mongodb为例,其它原理类似:
对于Nosql数据库,以mongodb为例,其它原理类似:
解决要点:
1)通过副本备份保证数据安全性;
2)通过节点竞选机制解决单点问题;
3)先从配置库检索分片信息,然后将请求分发到各个节点,最后由路由节点合并汇总结果
另辟蹊径——完全把数据放入内存怎么样?
我们知道,完全把数据放在内存中是不可靠的,实际上也不太现实,当我们的数据达到PB级别时,按照每个节点96G内存计算,在内存完全装满的数据情况下,我们需要的机器是:1PB=1024T=1048576G
节点数=1048576/96=10922个
实际上,考虑到数据备份,节点数往往在2.5万台左右。成本巨大决定了其不现实!
小结
从前面讨论我们了解到,把数据放在内存也好,不放在内存也好,都不能完完全全解决问题。
全部放在内存速度问题是解决了,但成本问题上来了。
为解决以上问题,从源头着手分析,通常会从以下方式来寻找方法:
1、存储数据时按有序存储;
2、将数据和索引分离;
3、压缩数据;
这就引出了Elasticsearch。
ES基础
ES定义
ES=elaticsearch简写, Elasticsearch是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。
Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。
Lucene与ES关系
- Lucene只是一个库。想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。
- Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。
ES主要解决的问题
- 检索相关数据;
- 返回统计结果;
- 速度要快。
ES工作原理
当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示:
ES核心概念
- Cluster:集群
ES可以作为一个独立的单个搜索服务器。不过,为了处理大型数据集,实现容错和高可用性,ES可以运行在许多互相合作的服务器上。这些服务器的集合称为集群。
- Node:节点
形成集群的每个服务器称为节点。
- Shard:分片
当有大量的文档时,由于内存的限制、磁盘处理能力不足、无法足够快的响应客户的请求等,一个节点可能不够。这个情况下,数据可以分为较小的分片。每个分片放到不同的服务器上。
当你查询的索引分布在多个分片上时,ES会把查询发送给每个相关的分片,并将结果组合在一起,而应用程序并不知道分片的存在,即:这个过程对用户来说是透明的。
- Replia:副本
为了提供查询吞吐量或实现高可用性,可以使用分片副本。
副本是一个分片的精确复制,每个分片可以有零个或者多个副本。ES中可以有许多相同的分片,其中之一被选中更改索引操作,这种特殊的分片称为主分片。
当主分片丢失时,如:该分片所在的数据不可用时,集群将副本提升为新的主分片。
- 全文检索
全文检索就是对一篇文章进行索引,可以根据关键字搜索,类似于mysql里的like语句。
全文索引就是把内容根据词的意义进行分词,然后分别创建索引,例如:
“你们的激情是因为什么事情来的”可能会被分词成:“你们”、“激情”、“什么事情”、“来”等token,这样当你搜索“你们”或者“激情”都会把这句话搜出来。
ES数据架构的主要概念(与关系数据库MySql对比)
- 关系型数据库中的数据库(DataBase),等价于ES中的索引(Index)
- 一个数据库下面有N张表(Table),等价于1个索引Index下面有N多类型(Type),
- 一个数据库表(Table)下的数据由多行(ROW)多列(column,属性)组成,等价于1个Type由多个文档(Document)和多Field组成。
- 在一个关系型数据库里面,schema定义了表、每个表的字段,还有表和字段之间的关系。 与之对应的,在ES中:Mapping定义索引下的Type的字段处理规则,即索引如何建立、索引类型、是否保存原始索引JSON文档、是否压缩原始JSON文档、是否需要分词处理、如何进行分词处理等。
- 在数据库中的增insert、删delete、改update、查search操作等价于ES中的增PUT/POST、删Delete、改Update、查GET。
ELK是什么?
ELK=elasticsearch+Logstash+kibana
elasticsearch:后台分布式存储以及全文检索
logstash: 日志加工、“搬运工”
kibana:数据可视化展示。
ELK架构为数据分布式存储、可视化查询和日志解析创建了一个功能强大的管理链。 三者相互配合,取长补短,共同完成分布式大数据处理工作。
ES特点和优势
- 分布式实时文件存储,可将每个字段存入索引,使其可以被检索到。
- 实时分析的分布式搜索引擎。
分布式:索引分拆成多个分片,每个分片可能零个或多个副本。集群中的每个数据节点都可承载一个或多个分片,并且协调和处理各种操作;
负载再平衡和路由在大多数情况下自动完成。
- 可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。也可以运行在单台PC上。
- 支持插件机制,分词插件、同步插件、Hadoop插件、可视化插件等。
ES性能
性能结果展示
- 硬件配置:
CPU 16核 AuthenticAMD
内存 总量:32GB
硬盘 总量:500GB 非SSD
- 在上述硬件指标的基础上测试性能如下:
- 平均索引吞吐量: 12307docs/s(每个文档大小:40B/docs)
- 平均CPU使用率: 887.7%(16核,平均每核:55.48%)
- 构建索引大小: 3.30111 GB
- 总写入量: 20.2123 GB
- 测试总耗时: 28m 54s
性能Es Rally工具(推荐)
elasticsearch性能测试工具rally深入详解
为什么使用ES
ES国内外使用优秀案例
- 2013年初,GitHub抛弃了Solr,采取ElasticSearch 来做PB级的搜索。 “GitHub使用ElasticSearch搜索20TB的数据,包括13亿文件和1300亿行代码”。
- 维基百科:启动以elasticsearch为基础的核心搜索架构。
- SoundCloud:“SoundCloud使用ElasticSearch为1.8亿用户提供即时而精准的音乐搜索服务”。
- 百度:百度目前广泛使用ElasticSearch作为文本数据分析,采集百度所有服务器上的各类指标数据及用户自定义数据,通过对各种数据进行多维分析展示,辅助定位分析实例异常或业务层面异常。目前覆盖百度内部20多个业务线(包括casio、云分析、网盟、预测、文库、直达号、钱包、风控等),单集群最大100台机器,200个ES节点,每天导入30TB+数据。
项目需要
实际项目开发实战中,几乎每个系统都会有一个搜索的功能,当搜索做到一定程度时,维护和扩展起来难度就会慢慢变大,所以很多公司都会把搜索单独独立出一个模块,用ElasticSearch等来实现。
近年ElasticSearch发展迅猛,已经超越了其最初的纯搜索引擎的角色,现在已经增加了数据聚合分析(aggregation)和可视化的特性,如果你有数百万的文档需要通过关键词进行定位时,ElasticSearch肯定是最佳选择。当然,如果你的文档是JSON的,你也可以把ElasticSearch当作一种“NoSQL数据库”, 应用ElasticSearch数据聚合分析(aggregation)的特性,针对数据进行多维度的分析。
【知乎:热酷架构师潘飞】ES在某些场景下替代传统DB
个人以为Elasticsearch作为内部存储来说还是不错的,效率也基本能够满足,在某些方面替代传统DB也是可以的,前提是你的业务不对操作的事性务有特殊要求;而权限管理也不用那么细,因为ES的权限这块还不完善。
由于我们对ES的应用场景仅仅是在于对某段时间内的数据聚合操作,没有大量的单文档请求(比如通过userid来找到一个用户的文档,类似于NoSQL的应用场景),所以能否替代NoSQL还需要各位自己的测试。
如果让我选择的话,我会尝试使用ES来替代传统的NoSQL,因为它的横向扩展机制太方便了。
ES的应用场景
通常我们面临问题有两个
- 新系统开发尝试使用ES作为存储和检索服务器。
- 现有系统升级需要支持全文检索服务,需要使用ES。
以上两种架构的使用,以下链接进行详细阐述。
Elasticsearch的使用场景深入详解
一线公司ES使用场景
- 新浪ES 如何分析处理32亿条实时日志 http://dockone.io/article/505
- 阿里ES 构建挖财自己的日志采集和分析体系 http://afoo.me/columns/tec/logging-platform-spec.html
- 有赞ES 业务日志处理 http://tech.youzan.com/you-zan-tong-ri-zhi-ping-tai-chu-tan/
- ES实现站内搜索 http://www.wtoutiao.com/p/13bkqiZ.html
如何部署ES
ES部署(无需安装)
- 零配置,开销即用
- 没有繁琐的安装配置
- java版本要求:最低1.7
[root@laoyang config_lhy]
/opt/jdk1.8.0_91
- 下载
wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.16.2-darwin-x86_64.tar.gz
wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.16.2-darwin-x86_64.tar.gz.sha512
shasum -a 512 -c elasticsearch-7.16.2-darwin-x86_64.tar.gz.sha512
tar -xzf elasticsearch-7.16.2-darwin-x86_64.tar.gz
cd elasticsearch-7.16.2/
说明:
缺省情况下,Elasticsearch 被配置成自动索引创建,无需额外的配置。但是,如果之前关闭了自动索引创建功能,你必须配置action.auto_create_index在elasticsearch.yml去打开自动创建索引功能。
5. 启动
/usr/local/elasticsearch-7.16.2
bin/elasticsearch -d(后台运行)
ES必要的插件
必要的Head、kibana、IK(中文分词)、logstash、graph等插件。
https://blog.csdn.net/laoyang360/
elasticsearch插件二—— kibana插件安装详解
ES windows下一键安装
自写bat脚本实现windows下一键安装。
1)一键安装ES及必要插件(head、kibana、IK、logstash等)
2)安装后以服务形式运行ES。
3)比自己摸索安装节省至少2小时时间,效率非常高。
脚本说明:
http://blog.csdn.net/laoyang360/article/details/51900235
ES对外接口(开发人员关注)
- java api接口
http://www.ibm.com/developerworks/library/j-use-elasticsearch-java-apps/index.html
- RESTful API接口
常见的增、删、改、查操作实现:
http://blog.csdn.net/laoyang360/article/details/51931981
ES遇到问题怎么办?
- 国外:https://discuss.elastic.co/
- 国内:http://elasticsearch.cn/
参考
elasticsearch官网
Elasticsearch学习,请先看这一篇!
《死磕 Elasticsearch 方法论》:普通程序员高效精进的 10 大狠招!(完整版)