- Qt:QCustomPlot库简介
十秒耿直拆包选手
CandC++QtandPysideQCustomPlot学习qtc++QCustomPlot
QCustomPlot是一个基于Qt框架的轻量级C++绘图库,专为高效绘制二维图表(如曲线图、柱状图、金融图表等)而设计。相比QtCharts模块,它以高性能和高度可定制性著称,尤其适合需要实时数据可视化的科学计算、工业监控和金融分析场景。核心特性概览特性说明轻量高效仅需2个头文件+1个源码文件,零外部依赖实时性能优化处理百万级数据点,支持OpenGL加速多图层系统支持无限图层叠加,独立坐标系交互
- OpenCV实战:图像颜色识别与提取、掩膜制作
前言在计算机视觉和图像处理领域,颜色识别是一项基础而重要的技术。无论是交通标志识别、工业分拣还是美颜滤镜开发,都离不开对特定颜色的处理。本文将带你全面掌握使用OpenCV进行颜色识别的关键技术,包含完整的代码实现和原理讲解。一、颜色空间基础1.1RGB颜色空间在图像处理中,最常见的就是RGB颜色空间。RGB颜色空间是我们接触最多的颜色空间,是一种用于表示和显示彩色图像的一种颜色模型。RGB代表红色
- OpenCV图像添加水印
一、前言在数字图像处理中,为图片添加水印是一项常见且重要的技术。无论是版权保护、品牌宣传还是防止未经授权的使用,水印都能发挥重要作用。OpenCV作为一款强大的计算机视觉库,提供了丰富的功能来实现各种水印效果。本教程将详细介绍如何使用OpenCV为图像添加文字水印和图片水印。二、环境准备在开始之前,请确保已安装以下环境:Python3.xOpenCV库(可通过pipinstallopencv-py
- 一键字幕翻译配音!这个免费神器让外语视频秒变母语版,AI翻译官已就位[特殊字符]
人工智能我来了
人工智能AI音视频人工智能
一键字幕翻译配音!这个免费神器让外语视频秒变母语版,AI翻译官已就位字幕组连夜辞职!这年头谁还手动做字幕啊?最近挖到个叫pyVideoTrans的开源神器,直接把视频翻译玩成全自动流水线——语音识别、字幕翻译、AI配音、视频合成四步打包完成,连手都不用动一下!外语生肉党狂喜!管你是追剧还是学网课,把视频往里一丢,喝着奶茶的功夫就能收获带双语字幕+地道配音的熟肉成品。关键是免费!开源!离线也能用!程
- GESP认证C++编程真题解析 | GESP202409 三级 单选题和判断题
热爱编程的通信人
历年GESPCSP-JCSP-S真题解析c++开发语言
欢迎大家订阅我的专栏:算法题解:C++与Python实现!本专栏旨在帮助大家从基础到进阶,逐步提升编程能力,助力信息学竞赛备战!专栏特色1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。适合人群:准备参加蓝桥杯、GESP、CSP-J、CS
- LeetCode 学习day3 不喜勿喷
小小小新人12123
leetcode学习算法python
题目:给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0。(LeetCode121.买卖股票的最佳时机)问题分析:简而言之为求最大差Python代码:importnumpyasnpc
- 嵌入式原理与应用篇---常见基础知识(9)
Atticus-Orion
微处理器原理与应用篇上位机操作篇上位机知识篇网络微处理器原理与应用
冯诺伊曼计算机的组成部分及功能冯诺伊曼计算机的设计基于“存储程序”原理,其核心思想是将程序和数据以二进制形式存储在存储器中,由计算机自动执行。以下是各部分的功能及设计思路:一、运算器(ArithmeticLogicUnit,ALU)功能:负责执行算术运算(如加减乘除)和逻辑运算(如与、或、非),是计算机处理数据的核心部件。设计思路:通过逻辑门电路(如全加器、乘法器)实现基本运算,采用并行计算结构提
- 使用 Simulink 来实现一个简化的电动汽车动力总成控制系统模型
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏数据结构simulinkmatlab
目录一、引言教程目标二、准备工作三、实现步骤详解✅步骤1:创建Simulink模型✅步骤2:添加电机与控制器模型✅步骤3:电池管理系统(BMS)✅步骤4:能量回收系统✅步骤5:连接各模块并设置仿真参数示例连线代码:设置仿真参数:✅步骤6:结果可视化✅步骤7:完整框图结构示意(文字版)四、运行仿真并测试效果五、结论与拓展方向✅本章收获:后续建议拓展方向:手把手教你学Simulink——电动车辆的动力
- 什么是零知识证明(Zero-Knowledge Proof, ZKP)
MonkeyKing.sun
零知识证明区块链
零知识证明(Zero-KnowledgeProof,ZKP)是一种密码学技术,它允许你向对方证明你“知道一个秘密”,但又不泄露这个秘密的任何信息。它的最大特点是:✅证明有效性,❌不暴露内容。一、零知识证明是什么?(通俗理解)想象你是爱丽丝(Alice),你知道一个藏宝图的密码,你想向鲍勃(Bob)证明你确实知道这个密码,但又不想告诉他密码是什么。零知识证明就像魔法一样地完成这件事:你证明你知道答案
- 什么是MPC(多方安全计算,Multi-Party Computation)
MonkeyKing.sun
安全
MPC(多方安全计算,Multi-PartyComputation)是一种密码学技术,允许多个参与方在不泄露各自私密输入数据的前提下,共同完成一个计算,并得到正确的计算结果。一、什么是MPC?定义:**多方安全计算(MPC)是一种加密协议,允许多个参与者在输入保持私密的情况下,**安全地进行联合计算,并仅暴露计算结果,而不暴露任何中间信息或原始数据。二、通俗理解:一群人合算工资平均值,但不想互相知
- 图像检索评价指标:mAP@k、mAP的计算
/home/liupc
11Python/DL/ML
mAP,meanAveragePrecision,平均检索精度.是图像检索领域最最常用的评价指标。一、mAP@k、mAP1.1mAP@k很多地方喜欢用这张图来解释,确实画的很好了,不过略有瑕疵,我稍微修改了一下。这张图是求mAP@10的结果。原图主要存在的问题就是,在前10张图片中,把所有的相似的结果都返回了。这样会给读者造成这样的困扰:没检索出来的但是又相似的图片怎么办??改了之后,就清晰多了。
- 具身智能基础
frostmelody
人工智能
1.MuJoCo:高保真物理仿真的核心引擎技术本质定义:MuJoCo(Multi-JointDynamicswithContact)是由EmoTodorov开发的物理仿真引擎,专注于多关节系统接触动力学的高效计算。核心突破:约束动力学模型:采用约束优化(而非传统弹簧阻尼模型)模拟物体接触,避免穿透和数值不稳定(公式:min12q˙TMq˙+q˙Tf\text{min}\frac{1}{2}\dot
- 【ESP32摄像头开发实例】-视频流接入Home Assistant
视觉与物联智能
物联网全栈开发实战ESP32单片机MCU物联网智能家居HomeAssistant嵌入式硬件
ESP32-CAM视频流接入HomeAssistant文章目录ESP32-CAM视频流接入HomeAssistant1、硬件、软件准备2、ESP32-CAM介绍3、视频流服务器代码实现4、程序下载到开发板5、接入HomeAssistant在这个项目中,我们将使用ESP32-CAM板构建一个IP监控摄像头。ESP32摄像头将托管一个视频流媒体网络服务器,您可以使用网络中的任何设备进行访问。1、硬件、
- 计算机组成原理 DRAM的集中刷新,分散刷新,异步刷新
blacksheep107
笔记
3.用16K×8位的DRAM芯片构成64K×32位存储器,设存储器读/写周期为0.5μs,CPU在1μs内至少要访问一次。试问采用哪种刷新方式比较合理?两次刷新的最大时间间隔是多少?对全部存储单元刷新一遍所需的实际刷新时间是多少?先求存储单元是几行几列的(按芯片算),16K=214B=(27)2B=(128×128)B。得存储单元是128×128。DRAM最大刷新周期:2ms,8ms,16ms等(
- 计算机组成原理 超详细DRAM集中刷新、分散刷新,异步刷新
在一个存取周期内,我们可以只进行读写操作,也可以只进行刷新操作;同样也可以前半段读写后半段刷新。但是对于如何设置DRAM刷新,那么就引入了下面的三种刷新方式1.集中刷新:统一分配时间来刷新DRAM,对于刷新间隔为2ms,内部储存单元为128*128的DRAM。若存取周期是0.5us,那么需要分配128*0.5也就是64us的时间来统一刷新每一行。这部分的时间称为死时间,此时不能进行读写操作。我们把
- 第27篇:SELinux安全增强机制深度解析与OpenEuler实践指南
SELinux安全增强机制深度解析与OpenEuler实践指南一、SELinux核心概念与安全体系架构1.1访问控制机制演进与SELinux定位在计算机系统安全领域,访问控制机制经历了从简单到复杂的发展历程。传统的自主访问控制(DAC)以文件所有者权限为核心,如Linux中的UID/GID权限体系,允许所有者自由分配权限,但这种机制在面对多用户复杂环境时存在安全隐患——一旦用户账户被入侵,攻击者可
- python ks值计算_风控模型中的K-S理解以及python实现
weixin_39747293
pythonks值计算
笔者在工作中计算单变量的ks值时,发现几个分布不同的变量好y计算的ks值相同,凭借统计直觉,发现一定存在问题,笔者从数据和计算ks代码两个方向进行排除。最后定位到计算使用stats.ks_2samp()函数计算ks值时,如果变量存在缺失值,计算得到ks值有误,下面笔者就来好好梳理一下ks值的前世今生。ks检验介绍笔者刚入门机器学习开始做的例子就是金融场景下风控模型。那时评价模型的好坏就用传统的机器
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- 经济学神图:洛伦兹曲线
大千AI助手
人工智能Python#OTHER决策树人工智能DecisionTree算法洛伦兹曲线基尼
洛伦兹曲线(LorenzCurve)是衡量社会收入或财富分配不平等程度的经典可视化工具,由美国统计学家马克斯·洛伦兹(MaxOttoLorenz)于1905年提出。它不仅是理解基尼系数的核心基础,也是经济学、社会学中分析资源分配公平性的关键图表。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文
- **双生“基尼”**:跨越世纪的术语撞车与学科分野
在学术的宇宙中,“基尼”(Gini)这个名字如同一个奇特的星标,闪耀在两个看似毫不相关的领域:衡量社会贫富差距的经济学与驱动人工智能的机器学习。然而,当人们在这两个领域都遇到“基尼指数”或“基尼系数”时,困惑油然而生——它们为何如此不同?又为何共享同一个名字?这不是某个“傻逼”的随意命名,而是一场跨越学科与世纪的“术语交通事故”,其背后是学术传承与概念抽象的交织。本文由「大千AI助手」原创发布,专
- 选择Alluxio来解决AI模型训练场景数据访问的五大理由
Alluxio
人工智能AI分布式大数据语言模型
在AI模型训练尤其是大模型领域,存储系统的性能和稳定性直接决定了模型训练、推理、部署任务的效率和成本。随着全球AI行业的爆发带来的数据规模的快速增长,如何高效管理和利用这些数据成为AI模型训练中的一大挑战。AI模型训练场景面临的五大难题1.数据读写性能不足在AI模型训练与推理过程中,数据的高效读写是确保计算效率的关键。然而,随着数据集的急剧增长,存储系统往往无法满足对高速数据传输的需求,导致读写性
- AI算力综述和资料整理
木鱼时刻
人工智能
目录总体介绍计算精度传输协议GPU池化资源调度CUDA技术GPU硬件参考链接总体介绍AI算力是人工智能系统的核心基础设施,涵盖了从计算精度、传输协议到硬件架构的完整技术栈。计算精度混合精度训练原生满血版DeepSeek671B是FP8精度。FP16在训练计算力占比有80-90%,FP32占比10%-20%。大模型训练中通常会用到FP16(半精度浮点数),但并不是只使用FP16,而是采用**混合精度
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- 重复原则与样本量估计:临床试验的统计引擎
qq_34062333
临床试验统计学
一、重复原则的科学内涵1.1核心目的1.1.1量化随机误差通过足够样本量估计效应值的波动范围,确保结果可重现。1.1.2避免偶然性结论避免因小样本极端结果导致的偶然性结论,确保结论稳健。1.1.3提升外推性覆盖人群异质性,提升研究结果的外推性。1.2统计学本质1.2.1标准误样本量增加,标准误减小,置信区间变窄,精度提高。二、样本量估计的四大核心参数2.1显著性水平(α)2.1.1定义I类错误概率
- 中科亿海微SoM模组——基于FPGA+RSIC-V的计算机板卡
ehiway
fpga开发
基于FPGA+RSIC-V的计算机板卡主芯片使用中科亿海微EQ6HL45-CSG324FPGA芯片和高性能微控制器HPM6880,并集合ADCLHA6958H、6通道数字隔离器SiLM5760、SiLM5763、内存W634GU6QB等器件,板卡实现了大容量配置存储等功能的融合,为模拟信号采集、数字信号处理、逻辑控制等应用提供高性能混合信号处理通用硬件平台。图板卡硬件整体框图图板卡实物图EQ6HL
- MSTP技术解析:提升网络负载均衡
Honey\
服务器运维
MSTP背景RSTP/STP的缺陷:RSTP/STP的被阻塞端口阻塞的链路不承载任何流量,无法实现数据的负载均衡;可能有二层次优路径MSTP:通过将一个或多个VLAN映射到instance上,再基于instance进行生成树的计算解决了二层环路问题;提供了二层网络冗余环境;实现流量的负载分担MSTP基本概念MSTRegion(多生成树域):MSTP网络中包含一个或多个MST域MSTI(多生成树实例
- Web中间件性能调优指南:线程池、长连接与负载均衡的最佳实践
编程实战派-李工
《Java负载均衡中间件优化Tomcat调优Nginx配置性能工程线程池技术Keep-Alive优化
目录引言一、Web容器线程池配置不当1.1线程池参数的核心作用与影响1.2线程池大小计算模型1.3动态调优实践二、Keep-Alive机制配置缺陷2.1Keep-Alive的工作原理2.2典型配置问题与影响2.3优化配置建议三、负载均衡策略缺失3.1负载均衡的核心价值3.2主流负载均衡算法对比3.3Nginx关键配置优化四、全链路压测与调优方案4.1压测实施流程4.2典型优化案例4.3持续监控体系
- RDKit:药物化学和分子数据处理的强大工具库
碳酸的唐
机器学习人工智能
引言在药物研发、化学信息学和分子设计领域,高效处理和分析分子数据是至关重要的。RDKit作为一个开源的化学信息学和机器学习工具包,为研究人员和数据科学家提供了丰富的功能,包括分子操作、描述符计算、指纹生成、相似性比较、子结构搜索和分子可视化等。本文将详细介绍RDKit的主要功能、应用场景以及实际操作示例,展示这一强大工具在分子数据处理中的核心价值。RDKit简介RDKit是一个由C++和Pytho
- LSNet: 基于侧向抑制的神经网络
碳酸的唐
模型养成与叙述有意思的py库神经网络人工智能深度学习
引言在计算机视觉领域,我们一直在寻找灵感来源以提高图像处理和识别的效果。而人类视觉系统作为经过数百万年进化的精密系统,无疑是最好的参考对象之一。今天,我要向大家介绍一个名为LSNet(LateralSuppressionNetwork,侧向抑制网络)的技术,它模拟了人类视觉系统中的侧向抑制机制,为计算机视觉任务带来了新的可能性。什么是侧向抑制?侧向抑制(LateralSuppression),也被
- 【网络安全】对称密码体制
Hacker_xingchen
web安全安全网络
1.对称密码体制概述1.1定义与特点对称密码体制,也称为单钥密码体制,是一种加密方法,其中加密和解密过程使用相同的密钥。这种加密方式的主要特点包括简单、高效和计算速度快,适合于大量数据的快速加密和解密。对称密码体制的安全性完全依赖于密钥的保密性,一旦密钥被泄露,加密的安全性就会受到威胁。效率:对称密码算法通常比非对称密码算法要快,因为它们的算法结构相对简单,计算量较小。密钥管理:对称密码体制的密钥
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p