以下是一个使用C++实现自定义线性系统的卡尔曼滤波拟合的示例代码:
#include
#include
using namespace std;
using namespace cv;
int main()
{
// 初始化卡尔曼滤波器
KalmanFilter kf(4, 2, 0);
// 状态转移矩阵
kf.transitionMatrix = (Mat_<float>(4, 4) <<
1, 0, 1, 0,
0, 1, 0, 1,
0, 0, 1, 0,
0, 0, 0, 1);
// 测量矩阵
Mat_<float> measurement(2, 1);
measurement.setTo(Scalar(0));
// 初始化测量矩阵
kf.measurementMatrix = (Mat_<float>(2, 4) <<
1, 0, 0, 0,
0, 1, 0, 0);
// 过程噪声协方差矩阵
kf.processNoiseCov = (Mat_<float>(4, 4) <<
0.1, 0, 0, 0,
0, 0.1, 0, 0,
0, 0, 0.01, 0,
0, 0, 0, 0.01);
// 测量噪声协方差矩阵
kf.measurementNoiseCov = (Mat_<float>(2, 2) <<
0.1, 0,
0, 0.1);
// 初始化状态估计
kf.statePre.setTo(Scalar(0));
kf.statePost.setTo(Scalar(0));
// 创建窗口
namedWindow("Kalman Filter", WINDOW_NORMAL);
// 创建随机数生成器
RNG rng;
// 生成一些初始点
vector<Point> points;
for (int i = 0; i < 100; ++i)
{
int x = rng.uniform(0, 500);
int y = rng.uniform(0, 500);
points.push_back(Point(x, y));
}
// 进行滤波拟合
for (int i = 0; i < points.size(); ++i)
{
// 测量值
measurement(0) = points[i].x;
measurement(1) = points[i].y;
// 预测
Mat prediction = kf.predict();
// 修正
Mat estimated = kf.correct(measurement);
// 绘制滤波前原始点
circle(estimated, points[i], 3, Scalar(0, 0, 255), -1);
// 绘制预测点
circle(estimated, Point(prediction.at<float>(0), prediction.at<float>(1)), 3, Scalar(0, 255, 0), -1);
// 绘制拟合曲线
line(estimated, Point(0, estimated.at<float>(1)), Point(500, estimated.at<float>(1) + estimated.at<float>(3) * 500), Scalar(255, 0, 0), 2);
// 显示结果
imshow("Kalman Filter", estimated);
waitKey(100);
}
return 0;
}